8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Scaffold free retinal pigment epithelium sheet engineering using modified alginate-RGD hydrogel

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tissue-specific extracellular matrix (ECM) plays a critical role in cell survival and homeostasis, which are particularly essential for directing differentiation of different complex tissues such as retina. However, ECM maintenance should be considered to design an effective therapeutic strategy for retina regeneration. To achieve this, cell sheet engineering has emerged as a growing approach to closely reconstruct basal membrane of cells through a scaffold-free manner. Several irreversible sight-threatening diseases are characterized by the dysfunction and lose of retinal pigment epithelium (RPE), leading to vision loss and eventually total blindness in patients. According to impressive developments in achievement of RPE from human embryonic stem cells (hESCs), we obtained RPE cells without any extrinsic factors in a co-culture system, and cultured them on a temporary alginate hydrogel substrate. Subsequently, Arg-Gly-Asp (RGD) peptide was superficially immobilized on the upper layer of hydrogel to improve cell attachment before harvesting sheet layer. RPE cell sheet layer was released by treating pre-seeded hydrogels with sodium citrate as a calcium chelating agent and characterized in both in vitro and in vivo models. RPE sheets formed tight junction and expressed high levels of retina structural markers such as ZO-1, Bestrophin and Collagen type IV. One week after in vivo transplantation of RPE sheet, cells survived in the subretinal space, indicating that our harvesting method is non-invasive. To sum up, we introduced a unique scaffold-free method for RPE cell sheet engineering, which can find potential use for future therapeutic purposes.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Alginate: properties and biomedical applications.

          Alginate is a biomaterial that has found numerous applications in biomedical science and engineering due to its favorable properties, including biocompatibility and ease of gelation. Alginate hydrogels have been particularly attractive in wound healing, drug delivery, and tissue engineering applications to date, as these gels retain structural similarity to the extracellular matrices in tissues and can be manipulated to play several critical roles. This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Embryonic stem cell trials for macular degeneration: a preliminary report.

            It has been 13 years since the discovery of human embryonic stem cells (hESCs). Our report provides the first description of hESC-derived cells transplanted into human patients. We started two prospective clinical studies to establish the safety and tolerability of subretinal transplantation of hESC-derived retinal pigment epithelium (RPE) in patients with Stargardt's macular dystrophy and dry age-related macular degeneration--the leading cause of blindness in the developed world. Preoperative and postoperative ophthalmic examinations included visual acuity, fluorescein angiography, optical coherence tomography, and visual field testing. These studies are registered with ClinicalTrials.gov, numbers NCT01345006 and NCT01344993. Controlled hESC differentiation resulted in greater than 99% pure RPE. The cells displayed typical RPE behaviour and integrated into the host RPE layer forming mature quiescent monolayers after transplantation in animals. The stage of differentiation substantially affected attachment and survival of the cells in vitro after clinical formulation. Lightly pigmented cells attached and spread in a substantially greater proportion (>90%) than more darkly pigmented cells after culture. After surgery, structural evidence confirmed cells had attached and continued to persist during our study. We did not identify signs of hyperproliferation, abnormal growth, or immune mediated transplant rejection in either patient during the first 4 months. Although there is little agreement between investigators on visual endpoints in patients with low vision, it is encouraging that during the observation period neither patient lost vision. Best corrected visual acuity improved from hand motions to 20/800 (and improved from 0 to 5 letters on the Early Treatment Diabetic Retinopathy Study [ETDRS] visual acuity chart) in the study eye of the patient with Stargardt's macular dystrophy, and vision also seemed to improve in the patient with dry age-related macular degeneration (from 21 ETDRS letters to 28). The hESC-derived RPE cells showed no signs of hyperproliferation, tumorigenicity, ectopic tissue formation, or apparent rejection after 4 months. The future therapeutic goal will be to treat patients earlier in the disease processes, potentially increasing the likelihood of photoreceptor and central visual rescue. Advanced Cell Technology. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The retinal pigment epithelium in visual function.

              Located between vessels of the choriocapillaris and light-sensitive outer segments of the photoreceptors, the retinal pigment epithelium (RPE) closely interacts with photoreceptors in the maintenance of visual function. Increasing knowledge of the multiple functions performed by the RPE improved the understanding of many diseases leading to blindness. This review summarizes the current knowledge of RPE functions and describes how failure of these functions causes loss of visual function. Mutations in genes that are expressed in the RPE can lead to photoreceptor degeneration. On the other hand, mutations in genes expressed in photoreceptors can lead to degenerations of the RPE. Thus both tissues can be regarded as a functional unit where both interacting partners depend on each other.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Bioscience and Bioengineering
                Journal of Bioscience and Bioengineering
                Elsevier BV
                13891723
                June 2022
                June 2022
                : 133
                : 6
                : 579-586
                Article
                10.1016/j.jbiosc.2022.02.002
                35339352
                c6c18797-3a8b-49a6-b7f2-c6508c5ad793
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article