57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      An Unexpected Sequence of Events: Mismatch Detection in the Human Hippocampus

      research-article
      * ,
      PLoS Biology
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ability to identify and react to novelty within the environment is fundamental to survival. Computational models emphasize the potential role of the hippocampus in novelty detection, its unique anatomical circuitry making it ideally suited to act as a comparator between past and present experience. The hippocampus, therefore, is viewed to detect associative mismatches between what is expected based on retrieval of past experience and current sensory input. However, direct evidence that the human hippocampus performs such operations is lacking. We explored brain responses to novel sequences of objects using functional magnetic resonance imaging (fMRI), while subjects performed an incidental target detection task. Our results demonstrate that hippocampal activation was maximal when prior predictions concerning which object would appear next in a sequence were violated by sensory reality. In so doing, we establish the biological reality of associative match-mismatch computations within the human hippocampus, a process widely held to play a cardinal role in novelty detection. Our results also suggest that the hippocampus may generate predictions about how future events will unfold, and critically detect when these expectancies are violated, even when task demands do not require it. The present study also offers broader insights into the nature of essential computations carried out by the hippocampus, which may also underpin its unique contribution to episodic memory.

          Abstract

          This functional imaging study suggests that the human hippocampus may generate predictions about how future events will unfold and may critically detect when these expectancies are violated.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Repetition and the brain: neural models of stimulus-specific effects.

          One of the most robust experience-related cortical dynamics is reduced neural activity when stimuli are repeated. This reduction has been linked to performance improvements due to repetition and also used to probe functional characteristics of neural populations. However, the underlying neural mechanisms are as yet unknown. Here, we consider three models that have been proposed to account for repetition-related reductions in neural activity, and evaluate them in terms of their ability to account for the main properties of this phenomenon as measured with single-cell recordings and neuroimaging techniques. We also discuss future directions for distinguishing between these models, which will be important for understanding the neural consequences of repetition and for interpreting repetition-related effects in neuroimaging data.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The medial temporal lobe.

            The medial temporal lobe includes a system of anatomically related structures that are essential for declarative memory (conscious memory for facts and events). The system consists of the hippocampal region (CA fields, dentate gyrus, and subicular complex) and the adjacent perirhinal, entorhinal, and parahippocampal cortices. Here, we review findings from humans, monkeys, and rodents that illuminate the function of these structures. Our analysis draws on studies of human memory impairment and animal models of memory impairment, as well as neurophysiological and neuroimaging data, to show that this system (a) is principally concerned with memory, (b) operates with neocortex to establish and maintain long-term memory, and (c) ultimately, through a process of consolidation, becomes independent of long-term memory, though questions remain about the role of perirhinal and parahippocampal cortices in this process and about spatial memory in rodents. Data from neurophysiology, neuroimaging, and neuroanatomy point to a division of labor within the medial temporal lobe. However, the available data do not support simple dichotomies between the functions of the hippocampus and the adjacent medial temporal cortex, such as associative versus nonassociative memory, episodic versus semantic memory, and recollection versus familiarity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hippocampus: cognitive processes and neural representations that underlie declarative memory.

              The hippocampus serves a critical role in declarative memory--our capacity to recall everyday facts and events. Recent studies using functional brain imaging in humans and neuropsychological analyses of humans and animals with hippocampal damage have revealed some of the elemental cognitive processes mediated by the hippocampus. In addition, recent characterizations of neuronal firing patterns in behaving animals and humans have suggested how neural representations in the hippocampus underlie those elemental cognitive processes in the service of declarative memory.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                December 2006
                28 November 2006
                : 4
                : 12
                : e424
                Affiliations
                [1]Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, London, United Kingdom
                University of California Irvine, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: d.kumaran@ 123456fil.ion.ucl.ac.uk
                Article
                06-PLBI-RA-1311R3 plbi-04-12-18
                10.1371/journal.pbio.0040424
                1661685
                17132050
                c6a06507-6256-465c-b4d1-2c1340150e56
                Copyright: © 2006 Kumaran and Maguire. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 21 July 2006
                : 11 October 2006
                Page count
                Pages: 11
                Categories
                Research Article
                Neuroscience
                Homo (Human)
                Custom metadata
                Kumaran D, Maguire EA (2006) An unexpected sequence of events: Mismatch detection in the human hippocampus. PLoS Biol 4(12): e424. DOI: 10.1371/journal.pbio.0040424

                Life sciences
                Life sciences

                Comments

                Comment on this article