7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Caffeoylquinic acids: chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references203

          • Record: found
          • Abstract: found
          • Article: not found

          PubChem in 2021: new data content and improved web interfaces

          Abstract PubChem (https://pubchem.ncbi.nlm.nih.gov) is a popular chemical information resource that serves the scientific community as well as the general public, with millions of unique users per month. In the past two years, PubChem made substantial improvements. Data from more than 100 new data sources were added to PubChem, including chemical-literature links from Thieme Chemistry, chemical and physical property links from SpringerMaterials, and patent links from the World Intellectual Properties Organization (WIPO). PubChem's homepage and individual record pages were updated to help users find desired information faster. This update involved a data model change for the data objects used by these pages as well as by programmatic users. Several new services were introduced, including the PubChem Periodic Table and Element pages, Pathway pages, and Knowledge panels. Additionally, in response to the coronavirus disease 2019 (COVID-19) outbreak, PubChem created a special data collection that contains PubChem data related to COVID-19 and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lignin biosynthesis.

            The lignin biosynthetic pathway has been studied for more than a century but has undergone major revisions over the past decade. Significant progress has been made in cloning new genes by genetic and combined bioinformatics and biochemistry approaches. In vitro enzymatic assays and detailed analyses of mutants and transgenic plants altered in the expression of lignin biosynthesis genes have provided a solid basis for redrawing the monolignol biosynthetic pathway, and structural analyses have shown that plant cell walls can tolerate large variations in lignin content and structure. In some cases, the potential value for agriculture of transgenic plants with modified lignin structure has been demonstrated. This review presents a current picture of monolignol biosynthesis, polymerization, and lignin structure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phenylpropanoid biosynthesis.

              The general phenylpropanoid metabolism generates an enormous array of secondary metabolites based on the few intermediates of the shikimate pathway as the core unit. The resulting hydroxycinnamic acids and esters are amplified in several cascades by a combination of reductases, oxygenases, and transferases to result in an organ and developmentally specific pattern of metabolites, characteristic for each plant species. During the last decade, methodology driven targeted and non-targeted approaches in several plant species have enabled the identification of the participating enzymes of this complex biosynthetic machinery, and revealed numerous genes, enzymes, and metabolites essential for regulation and compartmentation. Considerable success in structural and computational biology, combined with the analytical sensitivity to detect even trace compounds and smallest changes in the metabolite, transcript, or enzyme pattern, has facilitated progress towards a comprehensive view of the plant response to its biotic and abiotic environment. Transgenic approaches have been used to reveal insights into an apparently redundant gene and enzyme pattern required for functional integrity and plasticity of the various phenylpropanoid biosynthetic pathways. Nevertheless, the function and impact of all members of a gene family remain to be completely established. This review aims to give an update on the various facets of the general phenylpropanoid pathway, which is not only restricted to common lignin or flavonoid biosynthesis, but feeds into a variety of other aromatic metabolites like coumarins, phenolic volatiles, or hydrolyzable tannins.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                The Plant Journal
                Plant J
                Wiley
                0960-7412
                1365-313X
                September 2021
                July 23 2021
                September 2021
                : 107
                : 5
                : 1299-1319
                Affiliations
                [1 ]Department of Chemistry Oregon State University Corvallis OR USA
                [2 ]Linus Pauling Institute Oregon State University Corvallis OR USA
                [3 ]BENFRA Botanical Dietary Supplements Research Center Oregon Health and Science University Portland OR USA
                [4 ]Department of Bioengineering Nagaoka University of Technology Nagaoka, Niigata Japan
                [5 ]Department of Neurology Oregon Health and Science University Portland OR USA
                [6 ]Department of Pharmaceutical Sciences Oregon State University Corvallis OR USA
                Article
                10.1111/tpj.15390
                34171156
                c68e1064-720e-4ebb-80e5-3f441b84ebda
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article