14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We evaluated spring phenology changes from 1965 to 2001 in northeastern USA utilizing a unique data set from 72 locations with genetically identical lilac plants (Syringa chinensis, clone "Red Rothomagensis"). We also utilized a previously validated lilac-honeysuckle "spring index" model to reconstruct a more complete record of first leaf date (FLD) and first flower date (FFD) for the region from historical weather data. In addition, we examined mid-bloom dates for apple (Malus domestica) and grape (Vitis vinifera) collected at several sites in the region during approximately the same time period. Almost all lilac sites with significant linear trends for FLD or FFD versus year had negative slopes (advanced development). Regression analysis of pooled data for the 72 sites indicated an advance of -0.092 day/year for FFD (P=0.003). The slope for FLD was also negative (-0.048 day/year), but not significant (P=0.234). The simulated data from the "spring index" model, which relies on local daily temperature records, indicated highly significant (P<0.001) negative slopes of -0.210 and -0.123 day/year for FLD and FFD, respectively. Data collected for apple and grape also indicated advance spring development, with slopes for mid-bloom date versus year of -0.20 day/year (P=0.01) and -0.146 (P=0.14), respectively. Collectively, these results indicate an advance in spring phenology ranging from 2 to 8 days for these woody perennials in northeastern USA for the period 1965 to 2001, qualitatively consistent with a warming trend, and consistent with phenology shifts reported for other mid- and high-latitude regions.

          Related collections

          Author and article information

          Journal
          Int J Biometeorol
          International journal of biometeorology
          Springer Science and Business Media LLC
          0020-7128
          0020-7128
          May 2005
          : 49
          : 5
          Affiliations
          [1 ] Department of Horticulture, Cornell University, 14853 Ithaca, NY, USA. dww5@cornell.edu
          Article
          10.1007/s00484-004-0248-9
          15592880
          c683b56c-b1d7-4b61-88ff-48a1cbef3fd0
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content38

          Cited by64