1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      C1-based biomanufacturing: Advances, challenges and perspectives

      , , , , , , ,
      Bioresource Technology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One-carbon (C1) compounds have emerged as a key research focus due to the growth of metabolic engineering and synthetic biology as affordable and sustainable nonfood sugar feedstocks for energy-efficient and environmentally friendly biomanufacturing. This paper summarizes and discusses current developments in C1 compounds for biomanufacturing. First, two primary groups of microbes that use C1 compounds (native and synthetic) are introduced, and the traits, categorization, and functions of C1 microbes are summarized. Second, engineering strategies for C1 utilization are compiled and reviewed, including reconstruction of C1-utilization pathway, enzyme engineering, cofactor engineering, genome-scale modeling, and adaptive laboratory evolution. Third, a review of C1 compounds' uses in the synthesis of biofuels and high-value compounds is presented. Finally, potential obstacles to C1-based biomanufacturing are highlighted along with future research initiatives.

          Related collections

          Most cited references148

          • Record: found
          • Abstract: found
          • Article: not found

          Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review.

          Biofuel produced from lignocellulosic materials, so-called second generation bioethanol shows energetic, economic and environmental advantages in comparison to bioethanol from starch or sugar. However, physical and chemical barriers caused by the close association of the main components of lignocellulosic biomass, hinder the hydrolysis of cellulose and hemicellulose to fermentable sugars. The main goal of pretreatment is to increase the enzyme accessibility improving digestibility of cellulose. Each pretreatment has a specific effect on the cellulose, hemicellulose and lignin fraction thus, different pretreatment methods and conditions should be chosen according to the process configuration selected for the subsequent hydrolysis and fermentation steps. This paper reviews the most interesting technologies for ethanol production from lignocellulose and it points out several key properties that should be targeted for low-cost and advanced pretreatment processes. Copyright 2009 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products

            Microalgae have recently attracted considerable interest worldwide, due to their extensive application potential in the renewable energy, biopharmaceutical, and nutraceutical industries. Microalgae are renewable, sustainable, and economical sources of biofuels, bioactive medicinal products, and food ingredients. Several microalgae species have been investigated for their potential as value-added products with remarkable pharmacological and biological qualities. As biofuels, they are a perfect substitute to liquid fossil fuels with respect to cost, renewability, and environmental concerns. Microalgae have a significant ability to convert atmospheric CO2 to useful products such as carbohydrates, lipids, and other bioactive metabolites. Although microalgae are feasible sources for bioenergy and biopharmaceuticals in general, some limitations and challenges remain, which must be overcome to upgrade the technology from pilot-phase to industrial level. The most challenging and crucial issues are enhancing microalgae growth rate and product synthesis, dewatering algae culture for biomass production, pretreating biomass, and optimizing the fermentation process in case of algal bioethanol production. The present review describes the advantages of microalgae for the production of biofuels and various bioactive compounds and discusses culturing parameters.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Industrial biomanufacturing: The future of chemical production

                Bookmark

                Author and article information

                Journal
                Bioresource Technology
                Bioresource Technology
                Elsevier BV
                09608524
                January 2023
                January 2023
                : 367
                : 128259
                Article
                10.1016/j.biortech.2022.128259
                36347475
                c6678c3c-19f9-4f69-abda-118f2e112e78
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article