3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). III. Simulated Observables—the Return of the Spectrum

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI) is a community project that aims to quantify how differences in general circulation models (GCMs) could impact the climate prediction for TRAPPIST-1e and, subsequently, its atmospheric characterization in transit. Four GCMs have participated in THAI: ExoCAM, LMD-Generic, ROCKE-3D, and the UM. This paper, focused on the simulated observations, is the third part of a trilogy, following the analysis of two land planet scenarios (Part I) and two aquaplanet scenarios (Part II). Here we show a robust agreement between the simulated spectra and the number of transits estimated to detect the land planet atmospheres. For the cloudy aquaplanet ones, a 5 σ detection of CO 2 could be achieved in about 10 transits if the atmosphere contains at least 1 bar of CO 2. That number can vary by 41%–56% depending on the GCM used to predict the terminator profiles, principally due to differences in the cloud deck altitude, with ExoCAM and LMD-G producing higher clouds than ROCKE-3D and UM. Therefore, for the first time, this work provides “GCM uncertainty error bars” of ∼50% that need to be considered in future analyses of transmission spectra. We also analyzed the intertransit spectral variability. Its magnitude differs significantly between the GCMs, but its impact on the transmission spectra is within the measurement uncertainties. THAI has demonstrated the importance of model intercomparison for exoplanets and also paved the way for a larger project to develop an intercomparison meta-framework, namely, the Climates Using Interactive Suites of Intercomparisons Nested for Exoplanet Studies.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: not found
          • Article: not found

          Matplotlib: A 2D Graphics Environment

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                The Planetary Science Journal
                Planet. Sci. J.
                American Astronomical Society
                2632-3338
                September 15 2022
                September 01 2022
                September 15 2022
                September 01 2022
                : 3
                : 9
                : 213
                Article
                10.3847/PSJ/ac6cf1
                c660d270-300e-4d79-bd7c-e67f8834475c
                © 2022

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article