42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A New Lead Chemical for Strigolactone Biosynthesis Inhibitors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several triazole-containing chemicals have previously been shown to act as efficient inhibitors of cytochrome P450 monooxygenases. To discover a strigolactone biosynthesis inhibitor, we screened a chemical library of triazole derivatives to find chemicals that induce tiller bud outgrowth of rice seedlings. We discovered a triazole-type chemical, TIS13 [2,2-dimethyl-7-phenoxy-4-(1 H-1,2,4-triazol-1-yl)heptan-3-ol], which induced outgrowth of second tiller buds of wild-type seedlings, as observed for non-treated strigolactone-deficient d10 mutant seedlings. TIS13 treatment reduced strigolactone levels in both roots and root exudates in a concentration-dependent manner. Co-application of GR24, a synthetic strigolactone, with TIS13 canceled the TIS13-induced tiller bud outgrowth. Taken together, these results indicate that TIS13 inhibits strigolactone biosynthesis in rice seedlings. We propose that TIS13 is a new lead compound for the development of specific strigolactone biosynthesis inhibitors.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Strigolactone inhibition of shoot branching.

          A carotenoid-derived hormonal signal that inhibits shoot branching in plants has long escaped identification. Strigolactones are compounds thought to be derived from carotenoids and are known to trigger the germination of parasitic plant seeds and stimulate symbiotic fungi. Here we present evidence that carotenoid cleavage dioxygenase 8 shoot branching mutants of pea are strigolactone deficient and that strigolactone application restores the wild-type branching phenotype to ccd8 mutants. Moreover, we show that other branching mutants previously characterized as lacking a response to the branching inhibition signal also lack strigolactone response, and are not deficient in strigolactones. These responses are conserved in Arabidopsis. In agreement with the expected properties of the hormonal signal, exogenous strigolactone can be transported in shoots and act at low concentrations. We suggest that endogenous strigolactones or related compounds inhibit shoot branching in plants. Furthermore, ccd8 mutants demonstrate the diverse effects of strigolactones in shoot branching, mycorrhizal symbiosis and parasitic weed interaction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi.

            Arbuscular mycorrhizal (AM) fungi form mutualistic, symbiotic associations with the roots of more than 80% of land plants. The fungi are incapable of completing their life cycle in the absence of a host root. Their spores can germinate and grow in the absence of a host, but their hyphal growth is very limited. Little is known about the molecular mechanisms that govern signalling and recognition between AM fungi and their host plants. In one of the first stages of host recognition, the hyphae of AM fungi show extensive branching in the vicinity of host roots before formation of the appressorium, the structure used to penetrate the plant root. Host roots are known to release signalling molecules that trigger hyphal branching, but these branching factors have not been isolated. Here we have isolated a branching factor from the root exudates of Lotus japonicus and used spectroscopic analysis and chemical synthesis to identify it as a strigolactone, 5-deoxy-strigol. Strigolactones are a group of sesquiterpene lactones, previously isolated as seed-germination stimulants for the parasitic weeds Striga and Orobanche. The natural strigolactones 5-deoxy-strigol, sorgolactone and strigol, and a synthetic analogue, GR24, induced extensive hyphal branching in germinating spores of the AM fungus Gigaspora margarita at very low concentrations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inhibition of shoot branching by new terpenoid plant hormones.

              Shoot branching is a major determinant of plant architecture and is highly regulated by endogenous and environmental cues. Two classes of hormones, auxin and cytokinin, have long been known to have an important involvement in controlling shoot branching. Previous studies using a series of mutants with enhanced shoot branching suggested the existence of a third class of hormone(s) that is derived from carotenoids, but its chemical identity has been unknown. Here we show that levels of strigolactones, a group of terpenoid lactones, are significantly reduced in some of the branching mutants. Furthermore, application of strigolactones inhibits shoot branching in these mutants. Strigolactones were previously found in root exudates acting as communication chemicals with parasitic weeds and symbiotic arbuscular mycorrhizal fungi. Thus, we propose that strigolactones act as a new hormone class-or their biosynthetic precursors-in regulating above-ground plant architecture, and also have a function in underground communication with other neighbouring organisms.
                Bookmark

                Author and article information

                Journal
                Plant Cell Physiol
                pcp
                pcellphys
                Plant and Cell Physiology
                Oxford University Press
                0032-0781
                1471-9053
                July 2010
                3 June 2010
                3 June 2010
                : 51
                : 7
                : 1143-1150
                Affiliations
                1Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657 Japan
                2RIKEN Plant Science Center, Japan
                3Department of Agricultural and Environmental Biology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657 Japan
                4Weed Science Center, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505 Japan
                5These authors contributed equally to this work
                Author notes
                *Corresponding author: E-mail, asami@ 123456pgr1.ch.a.u-tokyo.ac.jp ; Fax, +81-3-5841-5157
                Article
                pcq077
                10.1093/pcp/pcq077
                2900822
                20522488
                c6384b2d-e7a9-4aa6-911d-91764b7bca19
                © The Author 2010. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 April 2010
                : 25 May 2010
                Categories
                Special Issue-Regular Papers

                Plant science & Botany
                strigolactone,inhibitor,rice,chemical library,triazole,p450
                Plant science & Botany
                strigolactone, inhibitor, rice, chemical library, triazole, p450

                Comments

                Comment on this article