4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The GA4GH Phenopacket schema defines a computable representation of clinical data

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The GAGH Phenopacket Modeling Consortium
      Nature Biotechnology
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The variant call format and VCFtools

          Summary: The variant call format (VCF) is a generic format for storing DNA polymorphism data such as SNPs, insertions, deletions and structural variants, together with rich annotations. VCF is usually stored in a compressed manner and can be indexed for fast data retrieval of variants from a range of positions on the reference genome. The format was developed for the 1000 Genomes Project, and has also been adopted by other projects such as UK10K, dbSNP and the NHLBI Exome Project. VCFtools is a software suite that implements various utilities for processing VCF files, including validation, merging, comparing and also provides a general Perl API. Availability: http://vcftools.sourceforge.net Contact: rd@sanger.ac.uk
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Human Phenotype Ontology in 2021

            Abstract The Human Phenotype Ontology (HPO, https://hpo.jax.org) was launched in 2008 to provide a comprehensive logical standard to describe and computationally analyze phenotypic abnormalities found in human disease. The HPO is now a worldwide standard for phenotype exchange. The HPO has grown steadily since its inception due to considerable contributions from clinical experts and researchers from a diverse range of disciplines. Here, we present recent major extensions of the HPO for neurology, nephrology, immunology, pulmonology, newborn screening, and other areas. For example, the seizure subontology now reflects the International League Against Epilepsy (ILAE) guidelines and these enhancements have already shown clinical validity. We present new efforts to harmonize computational definitions of phenotypic abnormalities across the HPO and multiple phenotype ontologies used for animal models of disease. These efforts will benefit software such as Exomiser by improving the accuracy and scope of cross-species phenotype matching. The computational modeling strategy used by the HPO to define disease entities and phenotypic features and distinguish between them is explained in detail.We also report on recent efforts to translate the HPO into indigenous languages. Finally, we summarize recent advances in the use of HPO in electronic health record systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A review of approaches to identifying patient phenotype cohorts using electronic health records

              Objective To summarize literature describing approaches aimed at automatically identifying patients with a common phenotype. Materials and methods We performed a review of studies describing systems or reporting techniques developed for identifying cohorts of patients with specific phenotypes. Every full text article published in (1) Journal of American Medical Informatics Association, (2) Journal of Biomedical Informatics, (3) Proceedings of the Annual American Medical Informatics Association Symposium, and (4) Proceedings of Clinical Research Informatics Conference within the past 3 years was assessed for inclusion in the review. Only articles using automated techniques were included. Results Ninety-seven articles met our inclusion criteria. Forty-six used natural language processing (NLP)-based techniques, 24 described rule-based systems, 41 used statistical analyses, data mining, or machine learning techniques, while 22 described hybrid systems. Nine articles described the architecture of large-scale systems developed for determining cohort eligibility of patients. Discussion We observe that there is a rise in the number of studies associated with cohort identification using electronic medical records. Statistical analyses or machine learning, followed by NLP techniques, are gaining popularity over the years in comparison with rule-based systems. Conclusions There are a variety of approaches for classifying patients into a particular phenotype. Different techniques and data sources are used, and good performance is reported on datasets at respective institutions. However, no system makes comprehensive use of electronic medical records addressing all of their known weaknesses.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Biotechnology
                Nat Biotechnol
                Springer Science and Business Media LLC
                1087-0156
                1546-1696
                June 2022
                June 15 2022
                June 2022
                : 40
                : 6
                : 817-820
                Article
                10.1038/s41587-022-01357-4
                35705716
                c62c789a-7828-4e39-a5f2-18898f203b3a
                © 2022

                https://www.springer.com/tdm

                https://www.springer.com/tdm

                History

                Comments

                Comment on this article