11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inerolysin and vaginolysin, the cytolysins implicated in vaginal dysbiosis, differently impair molecular integrity of phospholipid membranes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pore-forming toxins, inerolysin (INY) and vaginolysin (VLY), produced by vaginal bacteria Lactobacillus iners and Gardnerella vaginalis were studied using the artificial cholesterol-rich tethered bilayer membranes (tBLMs) by electrochemical techniques. The electrochemical impedance spectroscopy (EIS) of tBLMs attested for the toxin-induced impairment of the integrity of phospholipid membranes. This observation was in line with the atomic force microscopy data demonstrating formation of oligomeric protein assemblies in tBLMs. These assemblies exhibited different morphologies: VLY mostly formed complete rings, whereas INY produced arciform structures. We found that both EIS (membrane damage) and the surface plasmon resonance (protein binding) data obtained on tBLMs are in-line with the data obtained in human cell lysis experiments. EIS, however, is capable of capturing effects inaccessible for biological activity assays. Specifically, we found that the INY-induced damage of tBLMs is nearly a linear function of membrane cholesterol content, whereas VLY triggered significant damage only at high (50 mol%) cholesterol concentrations. The observed differences of INY and VLY activities on phospholipid membranes might have clinical importance: both toxin-producing bacteria have been found in healthy vagina and dysbiosis, suggesting the need for adaptation at different vaginal conditions. Our results broaden the possibilities of application of tBLMs in medical diagnostics.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          WSXM: a software for scanning probe microscopy and a tool for nanotechnology.

          In this work we briefly describe the most relevant features of WSXM, a freeware scanning probe microscopy software based on MS-Windows. The article is structured in three different sections: The introduction is a perspective on the importance of software on scanning probe microscopy. The second section is devoted to describe the general structure of the application; in this section the capabilities of WSXM to read third party files are stressed. Finally, a detailed discussion of some relevant procedures of the software is carried out.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Bacterial Communities in Women with Bacterial Vaginosis: High Resolution Phylogenetic Analyses Reveal Relationships of Microbiota to Clinical Criteria

            Background Bacterial vaginosis (BV) is a common condition that is associated with numerous adverse health outcomes and is characterized by poorly understood changes in the vaginal microbiota. We sought to describe the composition and diversity of the vaginal bacterial biota in women with BV using deep sequencing of the 16S rRNA gene coupled with species-level taxonomic identification. We investigated the associations between the presence of individual bacterial species and clinical diagnostic characteristics of BV. Methodology/Principal Findings Broad-range 16S rRNA gene PCR and pyrosequencing were performed on vaginal swabs from 220 women with and without BV. BV was assessed by Amsel’s clinical criteria and confirmed by Gram stain. Taxonomic classification was performed using phylogenetic placement tools that assigned 99% of query sequence reads to the species level. Women with BV had heterogeneous vaginal bacterial communities that were usually not dominated by a single taxon. In the absence of BV, vaginal bacterial communities were dominated by either Lactobacillus crispatus or Lactobacillus iners. Leptotrichia amnionii and Eggerthella sp. were the only two BV-associated bacteria (BVABs) significantly associated with each of the four Amsel’s criteria. Co-occurrence analysis revealed the presence of several sub-groups of BVABs suggesting metabolic co-dependencies. Greater abundance of several BVABs was observed in Black women without BV. Conclusions/Significance The human vaginal bacterial biota is heterogeneous and marked by greater species richness and diversity in women with BV; no species is universally present. Different bacterial species have different associations with the four clinical criteria, which may account for discrepancies often observed between Amsel and Nugent (Gram stain) diagnostic criteria. Several BVABs exhibited race-dependent prevalence when analyzed in separate groups by BV status which may contribute to increased incidence of BV in Black women. Tools developed in this project can be used to study microbial ecology in diverse settings at high resolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Vaginal Microbiota: What Have We Learned after a Decade of Molecular Characterization?

              We conducted a systematic review of the Medline database (U.S. National Library of Medicine, National Institutes of Health, Bethesda, MD, U.S.A) to determine if consistent molecular vaginal microbiota (VMB) composition patterns can be discerned after a decade of molecular testing, and to evaluate demographic, behavioral and clinical determinants of VMB compositions. Studies were eligible when published between 1 January 2008 and 15 November 2013, and if at least one molecular technique (sequencing, PCR, DNA fingerprinting, or DNA hybridization) was used to characterize the VMB. Sixty three eligible studies were identified. These studies have now conclusively shown that lactobacilli-dominated VMB are associated with a healthy vaginal micro-environment and that bacterial vaginosis (BV) is best described as a polybacterial dysbiosis. The extent of dysbiosis correlates well with Nugent score and vaginal pH but not with the other Amsel criteria. Lactobacillus crispatus is more beneficial than L. iners. Longitudinal studies have shown that a L. crispatus-dominated VMB is more likely to shift to a L. iners-dominated or mixed lactobacilli VMB than to full dysbiosis. Data on VMB determinants are scarce and inconsistent, but dysbiosis is consistently associated with HIV, human papillomavirus (HPV), and Trichomonas vaginalis infection. In contrast, vaginal colonization with Candida spp. is more common in women with a lactobacilli-dominated VMB than in women with dysbiosis. Cervicovaginal mucosal immune responses to molecular VMB compositions have not yet been properly characterized. Molecular techniques have now become more affordable, and we make a case for incorporating them into larger epidemiological studies to address knowledge gaps in etiology and pathogenesis of dysbiosis, associations of different dysbiotic states with clinical outcomes, and to evaluate interventions aimed at restoring and maintaining a lactobacilli-dominated VMB.
                Bookmark

                Author and article information

                Contributors
                gintaras.valincius@gmc.vu.lt
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                23 July 2019
                23 July 2019
                2019
                : 9
                : 10606
                Affiliations
                [1 ]ISNI 0000 0001 2243 2806, GRID grid.6441.7, Institute of Biochemistry, , Life Sciences Centre, Vilnius University, ; Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
                [2 ]ISNI 0000 0001 2243 2806, GRID grid.6441.7, Institute of Biotechnology, , Life Sciences Centre, Vilnius University, ; Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
                [3 ]GRID grid.425985.7, Center for Physical Sciences and Technology, ; Saulėtekio al. 3, Vilnius, LT-10257 Lithuania
                Author information
                http://orcid.org/0000-0002-9924-9177
                Article
                47043
                10.1038/s41598-019-47043-5
                6650466
                31337831
                c626893f-5f47-4ab0-ba39-bea2e91a8f90
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 11 January 2019
                : 9 July 2019
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                surface spectroscopy,membrane structure and assembly,atomic force microscopy,infectious-disease diagnostics

                Comments

                Comment on this article