1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modulation of miR-155-5p signalling via 5-ASA for the prevention of high microsatellite instability: an in vitro study using human epithelial cell lines

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          5-aminosalicylic acid (5-ASA) is a first-line treatment for maintaining colitis remission. It is a highly effective, safe, and well-tolerated drug with anti-inflammatory and chemo-preventive properties. While patients with primary sclerosing cholangitis (PSC) with concomitant ulcerative colitis are treated with 5-ASA, the molecular mechanisms underlying the drug’s chemo-preventive effects are not entirely understood. We previously reported that bile acids and lipopolysaccharide-induced miR-155 expression was associated with downregulating mismatch repair (MMR) proteins in CACO-2 cell lines. Therefore, in this investigation, a set of in vitro functional studies was performed to show the possible mechanisms behind the epigenetic relationship between miR-155 and 5-ASA’s prevention of high microsatellite instability (MSI-H). In transient transfection with miR-155Mimic, which behaves like endogenous miRNA, we confirmed the relationships between miR-155 and its target MMR in three human intestinal epithelial cell lines: CACO-2, NCM460D and HT-29. We have shown, for the first time, that 5-ASA modulates MLH1, MSH2, MSH6 in miR-155 transfected cells. These findings underline that chemoprotective 5-ASA therapy can effectively attenuate the expression of miR-155 and potentially prevent a development of MSI-H in a subset of colorectal cancers associated with PSC.

          Supplementary Information

          The online version contains supplementary material available at 10.1007/s13105-024-01033-y.

          Key Points

          • miR-155 may be a key regulator of tumorigenesis in the ascending colon of patients with PSC.

          • 5-ASA therapy can effectively attenuate the expression of miR-155 involved in the pathogenesis of high microsatellite instability.

          Supplementary Information

          The online version contains supplementary material available at 10.1007/s13105-024-01033-y.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer.

          In December 1997, the National Cancer Institute sponsored "The International Workshop on Microsatellite Instability and RER Phenotypes in Cancer Detection and Familial Predisposition," to review and unify the field. The following recommendations were endorsed at the workshop. (a) The form of genomic instability associated with defective DNA mismatch repair in tumors is to be called microsatellite instability (MSI). (b) A panel of five microsatellites has been validated and is recommended as a reference panel for future research in the field. Tumors may be characterized on the basis of: high-frequency MSI (MSI-H), if two or more of the five markers show instability (i.e., have insertion/deletion mutations), and low-frequency MSI (MSI-L), if only one of the five markers shows instability. The distinction between microsatellite stable (MSS) and low frequency MSI (MSI-L) can only be accomplished if a greater number of markers is utilized. (c) A unique clinical and pathological phenotype is identified for the MSI-H tumors, which comprise approximately 15% of colorectal cancers, whereas MSI-L and MSS tumors appear to be phenotypically similar. MSI-H colorectal tumors are found predominantly in the proximal colon, have unique histopathological features, and are associated with a less aggressive clinical course than are stage-matched MSI-L or MSS tumors. Preclinical models suggest the possibility that these tumors may be resistant to the cytotoxicity induced by certain chemotherapeutic agents. The implications for MSI-L are not yet clear. (d) MSI can be measured in fresh or fixed tumor specimens equally well; microdissection of pathological specimens is recommended to enrich for neoplastic tissue; and normal tissue is required to document the presence of MSI. (e) The "Bethesda guidelines," which were developed in 1996 to assist in the selection of tumors for microsatellite analysis, are endorsed. (f) The spectrum of microsatellite alterations in noncolonic tumors was reviewed, and it was concluded that the above recommendations apply only to colorectal neoplasms. (g) A research agenda was recommended.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microsatellite instability in colorectal cancer.

            Microsatellite instability (MSI) is a hypermutable phenotype caused by the loss of DNA mismatch repair activity. MSI is detected in about 15% of all colorectal cancers; 3% are of these are associated with Lynch syndrome and the other 12% are caused by sporadic, acquired hypermethylation of the promoter of the MLH1 gene, which occurs in tumors with the CpG island methylator phenotype. Colorectal tumors with MSI have distinctive features, including a tendency to arise in the proximal colon, lymphocytic infiltrate, and a poorly differentiated, mucinous or signet ring appearance. They have a slightly better prognosis than colorectal tumors without MSI and do not have the same response to chemotherapeutics. Discovery of MSI in colorectal tumors has increased awareness of the diversity of colorectal cancers and implications for specialized management of patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A microRNA expression signature of human solid tumors defines cancer gene targets.

              Small noncoding microRNAs (miRNAs) can contribute to cancer development and progression and are differentially expressed in normal tissues and cancers. From a large-scale miRnome analysis on 540 samples including lung, breast, stomach, prostate, colon, and pancreatic tumors, we identified a solid cancer miRNA signature composed by a large portion of overexpressed miRNAs. Among these miRNAs are some with well characterized cancer association, such as miR-17-5p, miR-20a, miR-21, miR-92, miR-106a, and miR-155. The predicted targets for the differentially expressed miRNAs are significantly enriched for protein-coding tumor suppressors and oncogenes (P < 0.0001). A number of the predicted targets, including the tumor suppressors RB1 (Retinoblastoma 1) and TGFBR2 (transforming growth factor, beta receptor II) genes were confirmed experimentally. Our results indicate that miRNAs are extensively involved in cancer pathogenesis of solid tumors and support their function as either dominant or recessive cancer genes.
                Bookmark

                Author and article information

                Contributors
                agnieszka.kempinska.podhorodecka@pum.edu.pl
                Journal
                J Physiol Biochem
                J Physiol Biochem
                Journal of Physiology and Biochemistry
                Springer Netherlands (Dordrecht )
                1138-7548
                1877-8755
                10 July 2024
                10 July 2024
                2024
                : 80
                : 3
                : 573-583
                Affiliations
                [1 ]Department of Medical Biology, Pomeranian Medical University in Szczecin, ( https://ror.org/01v1rak05) Szczecin, 70-111 Poland
                [2 ]GRID grid.13339.3b, ISNI 0000000113287408, Liver and Internal Medicine Unit, , Medical University of Warsaw, ; Warszawa, Poland
                [3 ]GRID grid.107950.a, ISNI 0000 0001 1411 4349, Translational Medicine Group, , Pomeranian Medical University in Szczecin, ; Szczecin, Poland
                Article
                1033
                10.1007/s13105-024-01033-y
                11502576
                38985369
                c60584cf-fb34-4c97-91da-0b8556c85553
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 31 May 2024
                : 28 June 2024
                Funding
                Funded by: National Science Centre in Poland
                Award ID: 2020/39/O/NZ4/01732
                Categories
                Research
                Custom metadata
                © University of Navarra 2024

                mir-155,mismatch repair genes,aminosalicylic acids,primary sclerosing cholangitis

                Comments

                Comment on this article