6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Corticosterone-mediated regulation and functions of miR-218-5p in rat brain

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic stress is one of the key precipitating factors in major depressive disorder (MDD). Stress associated studies have underscored the mechanistic role of epigenetic master players like microRNAs (miRNAs) in depression pathophysiology at both preclinical and clinical levels. Previously, we had reported changes in miR-218-5p expression in response to corticosterone (CORT) induced chronic stress. MiR-218-5p was one of the most significantly induced miRNAs in the prefrontal cortex (PFC) of rats under chronic stress. In the present report, we have investigated how chronic CORT exposure mechanistically affected miR-218-5p expression in the rat brain and how miR-218 could trigger molecular changes on its downstream regulatory pathways. Elevated expression of miR-218-5p was found in the PFC of CORT-treated rats. A glucocorticoid receptor (GR) targeted Chromatin-Immunoprecipitation (ChIP) assay revealed high GR occupancy on the promoter region of Slit3 gene hosting miR-218-2 in its 3rd intron. RNA-sequencing data based on RNA Induced silencing Complex Immunoprecipitation (RISC-IP) with AGO2 in SH-SY5Y cells detected six consistent target genes of miR-218-5p (APOL4, DTWD1, BNIP1, METTL22, SNAPC1, and HDAC6). The expression of all five genes, except APOL4, was successfully validated with qPCR in CORT-treated rat PFC. Further, Hdac6-based ChIP-seq experiment helped in mapping major genomic loci enriched for intergenic regions in the PFC of CORT-treated rat. A proximity-based gene ontology (GO) analysis revealed a majority of the intergenic sites to be part of key genes implicated in central nervous system functions, notably synapse organization, neuron projection morphogenesis, and axonogenesis. Our results suggest that the upregulation of miR-218-5p in PFC of CORT-treated rats possibly resulted from GR biding in the promoter region of Slit3 gene. Interestingly, Hdac6 was one of the consistent target genes potentially found to regulate CNS related genes by chromatin modification. Collectively, these findings establish the role of miR-218-5p in chronic stress and the epigenetic function it plays to induce chromatin-based transcriptional changes of several CNS genes in triggering stress-induced disorders, including depression. This also opens up the scope to understand the role of miR-218-5p as a potential target for noncoding RNA therapeutics in clinical depression.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Most mammalian mRNAs are conserved targets of microRNAs.

            MicroRNAs (miRNAs) are small endogenous RNAs that pair to sites in mRNAs to direct post-transcriptional repression. Many sites that match the miRNA seed (nucleotides 2-7), particularly those in 3' untranslated regions (3'UTRs), are preferentially conserved. Here, we overhauled our tool for finding preferential conservation of sequence motifs and applied it to the analysis of human 3'UTRs, increasing by nearly threefold the detected number of preferentially conserved miRNA target sites. The new tool more efficiently incorporates new genomes and more completely controls for background conservation by accounting for mutational biases, dinucleotide conservation rates, and the conservation rates of individual UTRs. The improved background model enabled preferential conservation of a new site type, the "offset 6mer," to be detected. In total, >45,000 miRNA target sites within human 3'UTRs are conserved above background levels, and >60% of human protein-coding genes have been under selective pressure to maintain pairing to miRNAs. Mammalian-specific miRNAs have far fewer conserved targets than do the more broadly conserved miRNAs, even when considering only more recently emerged targets. Although pairing to the 3' end of miRNAs can compensate for seed mismatches, this class of sites constitutes less than 2% of all preferentially conserved sites detected. The new tool enables statistically powerful analysis of individual miRNA target sites, with the probability of preferentially conserved targeting (P(CT)) correlating with experimental measurements of repression. Our expanded set of target predictions (including conserved 3'-compensatory sites), are available at the TargetScan website, which displays the P(CT) for each site and each predicted target.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap

              The Principal Component Analysis (PCA) is a widely used method of reducing the dimensionality of high-dimensional data, often followed by visualizing two of the components on the scatterplot. Although widely used, the method is lacking an easy-to-use web interface that scientists with little programming skills could use to make plots of their own data. The same applies to creating heatmaps: it is possible to add conditional formatting for Excel cells to show colored heatmaps, but for more advanced features such as clustering and experimental annotations, more sophisticated analysis tools have to be used. We present a web tool called ClustVis that aims to have an intuitive user interface. Users can upload data from a simple delimited text file that can be created in a spreadsheet program. It is possible to modify data processing methods and the final appearance of the PCA and heatmap plots by using drop-down menus, text boxes, sliders etc. Appropriate defaults are given to reduce the time needed by the user to specify input parameters. As an output, users can download PCA plot and heatmap in one of the preferred file formats. This web server is freely available at http://biit.cs.ut.ee/clustvis/.
                Bookmark

                Author and article information

                Contributors
                yogeshdwivedi@uabmc.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                7 January 2022
                7 January 2022
                2022
                : 12
                : 194
                Affiliations
                [1 ]GRID grid.265892.2, ISNI 0000000106344187, Department of Psychiatry and Behavioral Neurobiology, , University of Alabama at Birmingham, ; Birmingham, AL 35294 USA
                [2 ]GRID grid.265892.2, ISNI 0000000106344187, UAB Mood Disorder Program, Division of Behavioral Neurobiology, Department of Psychiatry and Behavioral Neurobiology, UAB Depression and Suicide Center, , University of Alabama at Birmingham, ; SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL USA
                Article
                3863
                10.1038/s41598-021-03863-y
                8742130
                34996981
                c6040161-30ca-4fb6-ac86-04a8dfaa1848
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 26 August 2021
                : 2 December 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000025, National Institute of Mental Health;
                Award ID: MH100616
                Award ID: MH107183
                Award ID: MH124248
                Award ID: MH118884
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                Uncategorized
                diseases,neuroscience,epigenetics in the nervous system,stress and resilience
                Uncategorized
                diseases, neuroscience, epigenetics in the nervous system, stress and resilience

                Comments

                Comment on this article