23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Intermolecular Failure of L-type Ca 2+ Channel and Ryanodine Receptor Signaling in Hypertrophy

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pressure overload–induced hypertrophy is a key step leading to heart failure. The Ca 2+-induced Ca 2+ release (CICR) process that governs cardiac contractility is defective in hypertrophy/heart failure, but the molecular mechanisms remain elusive. To examine the intermolecular aspects of CICR during hypertrophy, we utilized loose-patch confocal imaging to visualize the signaling between a single L-type Ca 2+ channel (LCC) and ryanodine receptors (RyRs) in aortic stenosis rat models of compensated (CHT) and decompensated (DHT) hypertrophy. We found that the LCC-RyR intermolecular coupling showed a 49% prolongation in coupling latency, a 47% decrease in chance of hit, and a 72% increase in chance of miss in DHT, demonstrating a state of “intermolecular failure.” Unexpectedly, these modifications also occurred robustly in CHT due at least partially to decreased expression of junctophilin, indicating that intermolecular failure occurs prior to cellular manifestations. As a result, cell-wide Ca 2+ release, visualized as “Ca 2+ spikes,” became desynchronized, which contrasted sharply with unaltered spike integrals and whole-cell Ca 2+ transients in CHT. These data suggested that, within a certain limit, termed the “stability margin,” mild intermolecular failure does not damage the cellular integrity of excitation-contraction coupling. Only when the modification steps beyond the stability margin does global failure occur. The discovery of “hidden” intermolecular failure in CHT has important clinical implications.

          Author Summary

          High blood pressure induces hypertrophy, a thickening of the cardiac muscle that eventually leads to heart failure, a leading cause of morbidity and mortality. The contractile power of the heart depends in part on signaling between calcium channels on the cell membrane (L-type Ca 2+ channels) and calcium release channels on a specialized calcium-regulating organelle called the sarcoplasmic reticulum. This signaling process is defective in heart failure. We have found that the signaling efficiency between a single L-type channel and its controlled Ca 2+ release channels decreases during the transition from hypertrophy to heart failure. Moreover, we find unexpectedly that the signaling failure between channels occurs even before any obvious defect in the cardiac cell's ability to contract is seen. In normal cells, the timing between calcium influx and release is rapid; but in hypertrophy before heart failure manifests, there is a delay in this signaling process. In seeking the underlying mechanisms of this intermolecular failure, we find that a protein known as junctophilin, which anchors the sarcoplasmic reticulum to the cell membrane system, is expressed at a lower level. These results reveal early molecular events associated with the progression of hypertrophy, and may provide new insights for developing methods of early diagnosis and treatment to prevent heart failure.

          Abstract

          The authors show that although whole-cell coupling of L-type calcium channels and ryanodine receptor current activation remains intact during compensated hypertrophy (before heart failure manifests), intermolecular coupling at a molecular level is already slipping.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban.

          Molecular etiologies of heart failure, an emerging cardiovascular epidemic affecting 4.7 million Americans and costing 17.8 billion health-care dollars annually, remain poorly understood. Here we report that an inherited human dilated cardiomyopathy with refractory congestive heart failure is caused by a dominant Arg --> Cys missense mutation at residue 9 (R9C) in phospholamban (PLN), a transmembrane phosphoprotein that inhibits the cardiac sarcoplasmic reticular Ca2+-adenosine triphosphatase (SERCA2a) pump. Transgenic PLN(R9C) mice recapitulated human heart failure with premature death. Cellular and biochemical studies revealed that, unlike wild-type PLN, PLN(R9C) did not directly inhibit SERCA2a. Rather, PLN(R9C) trapped protein kinase A (PKA), which blocked PKA-mediated phosphorylation of wild-type PLN and in turn delayed decay of calcium transients in myocytes. These results indicate that myocellular calcium dysregulation can initiate human heart failure-a finding that may lead to therapeutic opportunities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cellular and molecular response of cardiac myocytes to mechanical stress.

            External load plays a critical role in determining muscle mass and its phenotype in cardiac myocytes. Cardiac myocytes have the ability to sense mechanical stretch and convert it into intracellular growth signals, which lead to hypertrophy. Mechanical stretch of cardiac myocytes in vitro causes activation of multiple second messenger systems that are very similar to growth factor-induced cell signaling systems. Stretch of neonatal rat cardiac myocytes stimulates a rapid secretion of angiotensin II which, together with other growth factors, mediates stretch-induced hypertrophic responses in vitro. In this review, various cell signaling mechanisms initiated by mechanical stress on cardiac myocytes are summarized with emphasis on potential mechanosensing mechanisms and the relationship between mechanical loading and the cardiac renin-angiotensin system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure.

              Cardiac hypertrophy and heart failure caused by high blood pressure were studied in single myocytes taken from hypertensive rats (Dahl SS/Jr) and SH-HF rats in heart failure. Confocal microscopy and patch-clamp methods were used to examine excitation-contraction (EC) coupling, and the relation between the plasma membrane calcium current (ICa) and evoked calcium release from the sarcoplasmic reticulum (SR), which was visualized as "calcium sparks." The ability of ICa to trigger calcium release from the SR in both hypertrophied and failing hearts was reduced. Because ICa density and SR calcium-release channels were normal, the defect appears to reside in a change in the relation between SR calcium-release channels and sarcolemmal calcium channels. beta-Adrenergic stimulation largely overcame the defect in hypertrophic but not failing heart cells. Thus, the same defect in EC coupling that develops during hypertrophy may contribute to heart failure when compensatory mechanisms fail.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                February 2007
                9 January 2007
                : 5
                : 2
                : e21
                Affiliations
                [1]State Key Lab of Biomembrane and Membrane Biotechnology, Ministry of Education Key Lab of Molecular Cardiovascular Sciences and Institute of Vascular Medicine, Third Hospital, College of Life Sciences, Peking University, Beijing, China
                Babraham Institute, United Kingdom
                Author notes
                * To whom correspondence should be addressed. E-mail: wsq@ 123456pku.edu.cn (SQW); zhangyy@ 123456bjmu.edu.cn (YZ)
                Article
                06-PLBI-RA-1008R1 plbi-05-02-02
                10.1371/journal.pbio.0050021
                1764437
                17214508
                c5d95fdd-ba82-4268-a03c-51a5f780d41e
                Copyright: © 2007 Xu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 12 June 2006
                : 7 November 2006
                Page count
                Pages: 9
                Categories
                Research Article
                Cardiovascular Disorders
                Cell Biology
                Pathology
                Physiology
                Mammals
                Rattus (Rat)
                Custom metadata
                Xu M, Zhou P, Xu SM, Liu Y, Feng X, et al. (2007) Intermolecular failure of L-type Ca 2+ channel and ryanodine receptor signaling in hypertrophy. PLoS Biol 5(2): e21. doi: 10.1371/journal.pbio.0050021

                Life sciences
                Life sciences

                Comments

                Comment on this article