13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of autophagy via activation of PI3K/Akt/mTOR pathway contributes to the protection of hesperidin against myocardial ischemia/reperfusion injury

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hesperidin has been reported to attenuate myocardial ischemia/reperfusion (I/R) injury; however, its effect on autophagy during myocardial I/R and the underlying mechanism remains unknown. The present study aimed to investigate whether hesperidin inhibited I/R-induced excessive myocardial autophagy through activating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. Male adult rats were pretreated with hesperidin for a total of 3 days prior to ischemia in the absence or presence of LY294002, a PI3K inhibitor, and then subjected to ischemia for 30 min followed by reperfusion for 4 h. Myocardial infarct size was measured by Evans blue/triphenyltetrazolium chloride staining. Hematoxylin and eosin staining was used for observing the histological changes in the heart, and the serum levels of creatine kinase-MB (CK-MB) and cardiac troponin I (cTnI) were measured by enzyme-linked immunosorbent assay. Additionally, the protein levels of light chain (LC) 3II, Beclin1, phosphorylated (p)-mTOR, p-Akt and p-PI3K were determined by western blot analysis. Hesperidin pretreatment significantly decreased the myocardial infarct size, myocardial damage and serum levels of CK-MB and cTnI. Furthermore, the expression levels of LC3II and Beclin1 were significantly downregulated and the expression levels of p-mTOR, p-Akt and p-PI3K were markedly upregulated by hesperidin. However, the aforementioned effects as a result of hesperidin were significantly reversed by the presence of LY294002. These results demonstrated that hesperidin reduced myocardial I/R injury by suppressing excessive autophagy. Activation of the PI3K/Akt/mTOR pathway contributed to the inhibitory effect of hesperidin on excessive autophagy.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          The inflammatory response in myocardial infarction.

          One of the major therapeutic goals of modern cardiology is to design strategies aimed at minimizing myocardial necrosis and optimizing cardiac repair following myocardial infarction. However, a sound understanding of the biology is necessary before a specific intervention is pursued on a therapeutic basis. This review summarizes our current understanding of the cellular and molecular mechanisms regulating the inflammatory response following myocardial ischemia and reperfusion. Myocardial necrosis induces complement activation and free radical generation, triggering a cytokine cascade initiated by Tumor Necrosis Factor (TNF)-alpha release. If reperfusion of the infarcted area is initiated, it is attended by an intense inflammatory reaction. Interleukin (IL)-8 synthesis and C5a activation have a crucial role in recruiting neutrophils in the ischemic and reperfused myocardium. Neutrophil infiltration is regulated through a complex sequence of molecular steps involving the selectins and the integrins, which mediate leukocyte rolling and adhesion to the endothelium. Marginated neutrophils exert potent cytotoxic effects through the release of proteolytic enzymes and the adhesion with Intercellular Adhesion Molecule (ICAM)-1 expressing cardiomyocytes. Despite this potential injury, substantial evidence suggests that reperfusion enhances cardiac repair improving patient survival; this effect may be in part related to the inflammatory response. Monocyte Chemoattractant Protein (MCP)-1 is also markedly upregulated in the infarcted myocardium inducing recruitment of mononuclear cells in the injured areas. Monocyte-derived macrophages and mast cells may produce cytokines and growth factors necessary for fibroblast proliferation and neovascularization, leading to effective repair and scar formation. At this stage expression of inhibitory cytokines such as IL-10 may have a role in suppressing the acute inflammatory response and in regulating extracellular matrix metabolism. Fibroblasts in the healing scar undergo phenotypic changes expressing smooth muscle cell markers. Our previous review in this journal focused almost exclusively on reduction of the inflammatory injury. The current update is prompted by the potential therapeutic opportunity that the open vessel offers. By promoting more effective tissue repair, it may be possible to reduce the deleterious remodeling, that is the leading cause of heart failure and death. Elucidating the complex interactions and regulatory mechanisms responsible for cardiac repair may allow us to design effective inflammation-related interventions for the treatment of myocardial infarction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women.

            Dietary flavonoids may have beneficial cardiovascular effects in human populations, but epidemiologic study results have not been conclusive. We used flavonoid food composition data from 3 recently available US Department of Agriculture databases to improve estimates of dietary flavonoid intake and to evaluate the association between flavonoid intake and cardiovascular disease (CVD) mortality. Study participants were 34 489 postmenopausal women in the Iowa Women's Health Study who were free of CVD and had complete food-frequency questionnaire information at baseline. Intakes of total flavonoids and 7 subclasses were categorized into quintiles, and food sources were grouped into frequency categories. Proportional hazards rate ratios (RR) were computed for CVD, coronary heart disease (CHD), stroke, and total mortality after 16 y of follow-up. After multivariate adjustment, significant inverse associations were observed between anthocyanidins and CHD, CVD, and total mortality [RR (95% CI) for any versus no intake: 0.88 (0.78, 0.99), 0.91 (0.83, 0.99), and 0.90 (0.86, 0.95)]; between flavanones and CHD [RR for highest quintile versus lowest: 0.78 (0.65, 0.94)]; and between flavones and total mortality [RR for highest quintile versus lowest: 0.88 (0.82, 0.96)]. No association was found between flavonoid intake and stroke mortality. Individual flavonoid-rich foods associated with significant mortality reduction included bran (added to foods; associated with stroke and CVD); apples or pears or both and red wine (associated with CHD and CVD); grapefruit (associated with CHD); strawberries (associated with CVD); and chocolate (associated with CVD). Dietary intakes of flavanones, anthocyanidins, and certain foods rich in flavonoids were associated with reduced risk of death due to CHD, CVD, and all causes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemistry and pharmacology of the Citrus bioflavonoid hesperidin.

              Hesperidin, a bioflavonoid, is an abundant and inexpensive by-product of Citrus cultivation. A deficiency of this substance in the diet has been linked with abnormal capillary leakiness as well as pain in the extremities causing aches, weakness and night leg cramps. No signs of toxicity have been observed with the normal intake of hesperidin or related compounds. Both hesperidin and its aglycone hesperetin have been reported to possess a wide range of pharmacological properties. This paper reviews various aspects of hesperidin and its related compounds, including their occurrence, physical and chemical properties, analysis, pharmacokinetics, safety and toxicity and the marketed products available. A special emphasis has been laid on the pharmacological properties and medicinal uses of these compounds. Copyright 2001 John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Journal
                Int J Mol Med
                Int. J. Mol. Med
                IJMM
                International Journal of Molecular Medicine
                D.A. Spandidos
                1107-3756
                1791-244X
                October 2018
                30 July 2018
                30 July 2018
                : 42
                : 4
                : 1917-1924
                Affiliations
                [1 ]Department of Cardiology, Renmin Hospital of Wuhan University
                [2 ]Cardiovascular Research Institute of Wuhan University
                [3 ]Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060
                [4 ]Department of Cardiology, Huangshi Center Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei 435000
                [5 ]Department of Cardiology, Wuhan No. 1 Hospital, Wuhan, Hubei 430060, P.R. China
                Author notes
                Correspondence to: Dr Hong Jiang, Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, Hubei 430060, P.R. China, E-mail: jianghwurm@ 123456163.com
                Article
                ijmm-42-04-1917
                10.3892/ijmm.2018.3794
                6108872
                30066841
                c5b84fc3-bad7-4f98-97b9-ad9331c91773
                Copyright: © Li et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 03 March 2018
                : 24 July 2018
                Categories
                Articles

                autophagy,hesperidin,phosphatidylinositol 3-kinase/protein kinase b/mammalian target of rapamycin,myocardial ischemia/reperfusion injury,ly294002

                Comments

                Comment on this article