14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Simultaneous detection of respiratory viruses in children with acute respiratory infection using two different multiplex reverse transcription-PCR assays

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A 4-tube multiplex RT-PCR (mRT-PCR), which showed higher sensitivity over conventional methods, was previously developed for the diagnosis of 14 viral pathogens of the respiratory tract. Herein the mRT-PCR was compared to the commercial Luminex mPCR-microsphere flow cytometry assay (Resplex II) which allows the detection of 12 different viruses. Eleven different viruses were identified in 91 nasopharyngeal swabs of children with acute respiratory infection, influenza A (IAV) and B, respiratory syncytial virus (RSV), human rhinovirus (hRhV), human echovirus, parainfluenza viruses (PIV) 1, 2, 3 and 4, human metapneumovirus (hMPV), and human coronavirus NL63. The results of the two techniques showed 53 and 40 positive patients by the Resplex II assay and mRT-PCR, respectively, with a concordance in 35 positive and 33 negative patients (74.7%). Individual RT-PCR tests were performed to control viruses not simultaneously detected by the two multiplex assays. The major virus misdiagnosed by mRT-PCR was IAV whereas the major viruses misdiagnosed by Resplex II were PIV1, 3 and 4. The mRT-PCR remains a simple, rapid, and specific assay for the specific detection of respiratory viruses, and can be easily implemented with standards in clinical laboratories at a low cost.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Human Bocavirus and Acute Wheezing in Children

          Abstract Background . Human bocavirus is a newly discovered parvovirus. It has been detected primarily in children with acute lower respiratory tract infection, but its occurrence, clinical profile, and role as a causative agent of respiratory tract disease are not clear. Methods . We investigated the presence of human bocavirus by quantitative polymerase chain reaction of nasopharyngeal aspirate specimens and selected serum samples obtained from 259 children (median age, 1.6 years) who had been hospitalized for acute expiratory wheezing. The samples were analyzed for 16 respiratory viruses by polymerase chain reaction, virus culture, antigen detection, and serological assays. Results . At least 1 potential etiologic agent was detected in 95% of children, and >1 agent was detected in 34% of children. Human bocavirus was detected in 49 children (19%). A large proportion of the cases were mixed infections with other viruses, but human bocavirus was the only virus detected in 12 children (5%). High viral loads of human bocavirus were noted mainly in the absence of other viral agents, suggesting a causative role for acute wheezing. In addition, infections that had uncertain clinical relevance and low viral loads were prevalent. Human bocavirus DNA was frequently detected in serum specimens obtained from patients with acute wheezing, suggesting systemic infection. Conclusions . Human bocavirus is prevalent among children with acute wheezing and can cause systemic infection. Results suggest a model for bocavirus infection in which high viral loads are potentially associated with respiratory symptoms and low viral loads indicate asymptomatic shedding. Therefore, quantitative polymerase chain reaction analysis may be important for additional studies of human bocavirus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid and sensitive method using multiplex real-time PCR for diagnosis of infections by influenza a and influenza B viruses, respiratory syncytial virus, and parainfluenza viruses 1, 2, 3, and 4.

            Laboratory diagnosis of viral respiratory infections is generally performed by virus isolation in cell culture and immunofluorescent assays. Reverse transcriptase PCR is now recognized as a sensitive and specific alternative for detection of respiratory RNA viruses. A rapid real-time multiplex PCR assay was developed for the detection of influenza A and influenza B viruses, human respiratory syncytial virus (RSV), parainfluenza virus 1 (PIV1), PIV2, PIV3, and PIV4 in a two-tube multiplex reaction which used molecular beacons to discriminate the pathogens. A total of 358 respiratory samples taken over a 1-year period were analyzed by the multiplex assay. The incidence of respiratory viruses detected in these samples was 67 of 358 (19%) and 87 of 358 (24%) by culture and real-time PCR, respectively. Culture detected 3 influenza A virus, 2 influenza B virus, 57 RSV, 2 PIV1, and 2 PIV3 infections. All of these culture-positive samples and an additional 5 influenza A virus, 6 RSV, 2 PIV1, 1 PIV2, 1 PIV3, and 3 PIV4 infections were detected by the multiplex real-time PCR. The application of real-time PCR to clinical samples increases the sensitivity for respiratory viral diagnosis. In addition, results can be obtained within 6 h, which increases clinical relevance. Therefore, use of this real-time PCR assay would improve patient management and infection control.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Simultaneous detection of fourteen respiratory viruses in clinical specimens by two multiplex reverse transcription nested‐PCR assays

              Abstract There is a need for rapid, sensitive, and accurate diagnosis of lower respiratory tract infections in children, elderly, and immunocompromised patients, who are susceptible to serious complications. The multiplex RT‐nested PCR assay has been used widely for simultaneous detection of non‐related viruses involved in infectious diseases because of its high specificity and sensitivity. A new multiplex RT‐PCR assay is described in this report. This approach includes nested primer sets targeted to conserve regions of human parainfluenza virus haemagglutinin, human coronavirus spike protein, and human enterovirus and rhinovirus polyprotein genes. It permits rapid, sensitive, and simultaneous detection and typing of the four types of parainfluenza viruses (1, 2, 3, 4AB), human coronavirus 229E and OC43, and the generic detection of enteroviruses and rhinoviruses. The testing of 201 clinical specimens with this multiplex assay along with other one formerly described by our group to simultaneously detect and type the influenza viruses, respiratory syncytial viruses, and a generic detection of all serotypes of adenovirus, covers the detection of most viruses causing respiratory infectious disease in humans. The results obtained were compared with conventional viral culture, immunofluorescence assay, and a third multiplex RT‐PCR assay for all human parainfluenza viruses types described previously. In conclusion, both multiplex RT‐PCR assays provide a system capable of detecting and identifying simultaneously 14 different respiratory viruses in clinical specimens with high sensitivity and specificity, being useful for routine diagnosis and survey of these viruses within the population. J. Med. Virol. 72:484–495, 2004. © 2004 Wiley‐Liss, Inc.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Virol Methods
                J. Virol. Methods
                Journal of Virological Methods
                Elsevier B.V.
                0166-0934
                1879-0984
                26 July 2009
                December 2009
                26 July 2009
                : 162
                : 1
                : 40-45
                Affiliations
                [a ]Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
                [b ]Shanghai Institute of Biological Science, Shanghai, China
                [c ]Shanghai Nanxiang Paediatric Hospital, Shanghai, China
                [d ]Institut Pasteur du Cambodge, Phnom Penh, Cambodia
                [e ]Laboratoire de Virologie, Centre Hospitalier Universitaire, Caen, France
                Author notes
                [* ]Corresponding author at: Institut Pasteur of Shanghai, Chinese Academy of Sciences, 411, Hefei Road, 200025 Shanghai, China. Tel.: +86 21 6384 5146; fax: +86 21 6384 3571. vdeubel@ 123456sibs.ac.cn
                Article
                S0166-0934(09)00331-0
                10.1016/j.jviromet.2009.07.004
                7119720
                19638288
                c5a6ad87-7447-4cee-bd9d-1d9402a70863
                Copyright © 2009 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 2 December 2008
                : 14 July 2009
                : 20 July 2009
                Categories
                Article

                Microbiology & Virology
                respiratory virus,multiplex rt-pcr,diagnosis
                Microbiology & Virology
                respiratory virus, multiplex rt-pcr, diagnosis

                Comments

                Comment on this article

                scite_

                Similar content130

                Cited by24

                Most referenced authors391