42
views
0
recommends
+1 Recommend
3 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An evaluation for harnessing low-enthalpy geothermal energy in the Limpopo Province, South Africa

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          South Africa generates most of its energy requirements from coal, and is now the leading carbon emitter in Africa, and has one of the highest rates of emissions of all nations in the world. In an attempt to decrease its CO2 emissions, South Africa continues to research and develop alternative forms of energy, expand on the development of nuclear and has began to explore potentially vast shale gas reserves. In this mix, geothermal has not been considered to date as an alternative energy source. This omission appears to stem largely from the popular belief that South Africa is tectonically too stable. In this study, we investigated low-enthalpy geothermal energy from one of a number of anomalously elevated heat flow regions in South Africa. Here, we consider a 75-MW enhanced geothermal systems plant in the Limpopo Province, sustainable over a 30-year period. All parameters were inculcated within a levelised cost of electricity model that calculates the single unit cost of electricity and tests its viability and potential impact toward South Africa's future energy security and CO2 reduction. The cost of electricity produced is estimated at 14 USc/KWh, almost double that of coal-generated energy. However, a USD25/MWh renewable energy tax incentive has the potential of making enhanced geothermal systems comparable with other renewable energy sources. It also has the potential of CO2 mitigation by up to 1.5 gCO,/KWh. Considering the aggressive nature of the global climate change combat and South Africa's need for a larger renewable energy base, low-enthalpy geothermal energy could potentially form another energy option in South Africa's alternative energy basket.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: not found
          • Article: not found

          Metagenomic analysis of bacterial diversity of Siloam hot water spring, Limpopo, South Africa

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Physical and chemical characteristics of thermal springs in the Waterberg area in Limpopo Province, South Africa

            The Limpopo Province in South Africa is richly endowed with thermal springs. Some have been developed for recreational, tourism or other purposes, while a number remain completely undeveloped. If the full economic potential of springs can be realised in a sustainable manner, they could make a substantial contribution to the local or even regional economy. The optimal use of a thermal spring is largely dependent upon its physical and chemical characteristics. This article focuses on the temperature and chemical features of 8 selected thermal springs located in the southern (Waterberg) region of the Limpopo Province, namely Warmbaths, Loubad, Vischgat, Die Oog, Rhemardo, Lekkerrus, Libertas and Buffelshoek. All of these springs are of meteoric origin, with water temperatures ranging from 30°C to 52°C. The mineral composition of the thermal waters reflects the geological formations found at the depth of origin. Changes in land use that occurred over the past few decades have apparently had no impact on the physical and chemical properties of the thermal spring waters. This effect may, however, become evident at a later stage due to a time lag in the migration of contaminants. The fluoride concentration of water from seven of the eight springs (all except Loubad) does not conform to domestic water quality guidelines and makes the water unfit for human consumption. Unacceptably high values of mercury were detected at Libertas. It is recommended that strict monitoring of the concentration of fluoride and other potentially harmful elements should be mandatory whenever the thermal spring water is used for bottling, domestic or full-contact recreational purposes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              3

                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Journal
                sajs
                South African Journal of Science
                S. Afr. j. sci.
                Academy of Science of South Africa (Pretoria )
                1996-7489
                February 2014
                : 110
                : 3-4
                : 01-10
                Affiliations
                [1 ] Council for Geoscience South Africa
                [2 ] Nelson Mandela Metropolitan University South Africa
                [3 ] International Institute for Applied Systems Analysis Austria
                Article
                S0038-23532014000200017
                10.1590/sajs.2014/20130282
                c5a10036-1e77-4252-bc82-7851157682a1

                http://creativecommons.org/licenses/by/4.0/

                History
                Product

                SciELO South Africa

                Self URI (journal page): http://www.scielo.org.za/scielo.php?script=sci_serial&pid=0038-2353&lng=en
                Categories
                Biology
                Humanities, Multidisciplinary

                General life sciences
                climate change,renewable energy,geothermal energy,enhanced geothermal systems,energy policy

                Comments

                Comment on this article