0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spermbots and Their Applications in Assisted Reproduction: Current Progress and Future Perspectives

      discussion

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sperm quality is declining dramatically during the past decades. Male infertility has been a serious health and social problem. The sperm cell driven biohybrid nanorobot opens a new era for automated and precise assisted reproduction. Therefore, it is urgent and necessary to conduct an updated review and perspective from the viewpoints of the researchers and clinicians in the field of reproductive medicine. In the present review, we first update the current classification, design, control and applications of various spermbots. Then, by a comprehensive summary of the functional features of sperm cells, the journey of sperms to the oocyte, and sperm-related dysfunctions, we provide a systematic guidance to further improve the design of spermbots. Focusing on the translation of spermbots into clinical practice, we point out that the main challenges are biocompatibility, effectiveness, and ethical issues. Considering the special requirements of assisted reproduction, we also propose the three laws for the clinical usage of spermbots: good genetics, gentle operation and no contamination. Finally, a three-step roadmap is proposed to achieve the goal of clinical translation. We believe that spermbot-based treatments can be validated and approved for in vitro clinical usage in the near future. However, multi-center and multi-disciplinary collaborations are needed to further promote the translation of spermbots into in vivo clinical applications.

          Graphical Abstract

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots.

          Microorganisms move in challenging environments by periodic changes in body shape. In contrast, current artificial microrobots cannot actively deform, exhibiting at best passive bending under external fields. Here, by taking advantage of the wireless, scalable and spatiotemporally selective capabilities that light allows, we show that soft microrobots consisting of photoactive liquid-crystal elastomers can be driven by structured monochromatic light to perform sophisticated biomimetic motions. We realize continuum yet selectively addressable artificial microswimmers that generate travelling-wave motions to self-propel without external forces or torques, as well as microrobots capable of versatile locomotion behaviours on demand. Both theoretical predictions and experimental results confirm that multiple gaits, mimicking either symplectic or antiplectic metachrony of ciliate protozoa, can be achieved with single microswimmers. The principle of using structured light can be extended to other applications that require microscale actuation with sophisticated spatiotemporal coordination for advanced microrobotic technologies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery.

            In the past decades, polymeric nanoparticles have emerged as a most promising and viable technology platform for targeted and controlled drug delivery. As vehicles, ideal nanoparticles are obliged to possess high drug loading levels, deliver drug to the specific pathological site and/or target cells without drug leakage on the way, while rapidly unload drug at the site of action. To this end, various "intelligent" polymeric nanoparticles that release drugs in response to an internal or external stimulus such as pH, redox, temperature, magnetic and light have been actively pursued. These stimuli-responsive nanoparticles have demonstrated, though to varying degrees, improved in vitro and/or in vivo drug release profiles. In an effort to further improve drug release performances, novel dual and multi-stimuli responsive polymeric nanoparticles that respond to a combination of two or more signals such as pH/temperature, pH/redox, pH/magnetic field, temperature/reduction, double pH, pH and diols, temperature/magnetic field, temperature/enzyme, temperature/pH/redox, temperature/pH/magnetic, pH/redox/magnetic, temperature/redox/guest molecules, and temperature/pH/guest molecules have recently been developed. Notably, these combined responses take place either simultaneously at the pathological site or in a sequential manner from nanoparticle preparation, nanoparticle transporting pathways, to cellular compartments. These dual and multi-stimuli responsive polymeric nanoparticles have shown unprecedented control over drug delivery and release leading to superior in vitro and/or in vivo anti-cancer efficacy. With programmed site-specific drug delivery feature, dual and multi-stimuli responsive nanoparticulate drug formulations have tremendous potential for targeted cancer therapy. In this review paper, we highlight the recent exciting developments in dual and multi-stimuli responsive polymeric nanoparticles for precision drug delivery applications, with a particular focus on their design, drug release performance, and therapeutic benefits. Copyright © 2013 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The effects of oxidative stress on female reproduction: a review

              Oxidative stress (OS), a state characterized by an imbalance between pro-oxidant molecules including reactive oxygen and nitrogen species, and antioxidant defenses, has been identified to play a key role in the pathogenesis of subfertility in both males and females. The adverse effects of OS on sperm quality and functions have been well documented. In females, on the other hand, the impact of OS on oocytes and reproductive functions remains unclear. This imbalance between pro-oxidants and antioxidants can lead to a number of reproductive diseases such as endometriosis, polycystic ovary syndrome (PCOS), and unexplained infertility. Pregnancy complications such as spontaneous abortion, recurrent pregnancy loss, and preeclampsia, can also develop in response to OS. Studies have shown that extremes of body weight and lifestyle factors such as cigarette smoking, alcohol use, and recreational drug use can promote excess free radical production, which could affect fertility. Exposures to environmental pollutants are of increasing concern, as they too have been found to trigger oxidative states, possibly contributing to female infertility. This article will review the currently available literature on the roles of reactive species and OS in both normal and abnormal reproductive physiological processes. Antioxidant supplementation may be effective in controlling the production of ROS and continues to be explored as a potential strategy to overcome reproductive disorders associated with infertility. However, investigations conducted to date have been through animal or in vitro studies, which have produced largely conflicting results. The impact of OS on assisted reproductive techniques (ART) will be addressed, in addition to the possible benefits of antioxidant supplementation of ART culture media to increase the likelihood for ART success. Future randomized controlled clinical trials on humans are necessary to elucidate the precise mechanisms through which OS affects female reproductive abilities, and will facilitate further explorations of the possible benefits of antioxidants to treat infertility.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                ijn
                International Journal of Nanomedicine
                Dove
                1176-9114
                1178-2013
                31 May 2024
                2024
                : 19
                : 5095-5108
                Affiliations
                [1 ]Research Institute for Reproductive Medicine and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital , Wuxi, 214002, People’s Republic of China
                [2 ]Center for Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University , Wuxi, 214002, People’s Republic of China
                [3 ]Department of Laboratory Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University , Wuxi, 214002, People’s Republic of China
                Author notes
                Correspondence: Tao Zhou; Rui Yang, Email zhoutao@njmu.edu.cn; ruiyang826@163.com
                [*]

                These authors contributed equally to this work

                Author information
                http://orcid.org/0009-0005-8848-1922
                http://orcid.org/0000-0003-2219-6385
                http://orcid.org/0000-0002-1835-9375
                Article
                465548
                10.2147/IJN.S465548
                11149708
                38836008
                c5925295-f013-4723-8e26-60fa47725ad5
                © 2024 Zhang et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 23 February 2024
                : 25 May 2024
                Page count
                Figures: 4, References: 80, Pages: 14
                Categories
                Perspectives

                Molecular medicine
                assisted reproduction,biohybrid nanorobot,clinical translation,male infertility,spermbot

                Comments

                Comment on this article