13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A new early diverging thalattosuchian (Crocodylomorpha) from the Early Jurassic (Pliensbachian) of Dorset, U.K. and implications for the origin and evolution of the group

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space

          Since its introduction in 2001, MrBayes has grown in popularity as a software package for Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) methods. With this note, we announce the release of version 3.2, a major upgrade to the latest official release presented in 2003. The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly. The introduction of new proposals and automatic optimization of tuning parameters has improved convergence for many problems. The new version also sports significantly faster likelihood calculations through streaming single-instruction-multiple-data extensions (SSE) and support of the BEAGLE library, allowing likelihood calculations to be delegated to graphics processing units (GPUs) on compatible hardware. Speedup factors range from around 2 with SSE code to more than 50 with BEAGLE for codon problems. Checkpointing across all models allows long runs to be completed even when an analysis is prematurely terminated. New models include relaxed clocks, dating, model averaging across time-reversible substitution models, and support for hard, negative, and partial (backbone) tree constraints. Inference of species trees from gene trees is supported by full incorporation of the Bayesian estimation of species trees (BEST) algorithms. Marginal model likelihoods for Bayes factor tests can be estimated accurately across the entire model space using the stepping stone method. The new version provides more output options than previously, including samples of ancestral states, site rates, site d N /d S rations, branch rates, and node dates. A wide range of statistics on tree parameters can also be output for visualization in FigTree and compatible software.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TNT version 1.5, including a full implementation of phylogenetic morphometrics

            Version 1.5 of the computer program TNT completely integrates landmark data into phylogenetic analysis. Landmark data consist of coordinates (in two or three dimensions) for the terminal taxa; TNT reconstructs shapes for the internal nodes such that the difference between ancestor and descendant shapes for all tree branches sums up to a minimum; this sum is used as tree score. Landmark data can be analysed alone or in combination with standard characters; all the applicable commands and options in TNT can be used transparently after reading a landmark data set. The program continues implementing all the types of analyses in former versions, including discrete and continuous characters (which can now be read at any scale, and automatically rescaled by TNT). Using algorithms described in this paper, searches for landmark data can be made tens to hundreds of times faster than it was possible before (from T to 3T times faster, where T is the number of taxa), thus making phylogenetic analysis of landmarks feasible even on standard personal computers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A Total-Evidence Approach to Dating with Fossils, Applied to the Early Radiation of the Hymenoptera

              Phylogenies are usually dated by calibrating interior nodes against the fossil record. This relies on indirect methods that, in the worst case, misrepresent the fossil information. Here, we contrast such node dating with an approach that includes fossils along with the extant taxa in a Bayesian total-evidence analysis. As a test case, we focus on the early radiation of the Hymenoptera, mostly documented by poorly preserved impression fossils that are difficult to place phylogenetically. Specifically, we compare node dating using nine calibration points derived from the fossil record with total-evidence dating based on 343 morphological characters scored for 45 fossil (4--20 complete) and 68 extant taxa. In both cases we use molecular data from seven markers (∼5 kb) for the extant taxa. Because it is difficult to model speciation, extinction, sampling, and fossil preservation realistically, we develop a simple uniform prior for clock trees with fossils, and we use relaxed clock models to accommodate rate variation across the tree. Despite considerable uncertainty in the placement of most fossils, we find that they contribute significantly to the estimation of divergence times in the total-evidence analysis. In particular, the posterior distributions on divergence times are less sensitive to prior assumptions and tend to be more precise than in node dating. The total-evidence analysis also shows that four of the seven Hymenoptera calibration points used in node dating are likely to be based on erroneous or doubtful assumptions about the fossil placement. With respect to the early radiation of Hymenoptera, our results suggest that the crown group dates back to the Carboniferous, ∼309 Ma (95% interval: 291--347 Ma), and diversified into major extant lineages much earlier than previously thought, well before the Triassic. [Bayesian inference; fossil dating; morphological evolution; relaxed clock; statistical phylogenetics.]
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Vertebrate Paleontology
                Journal of Vertebrate Paleontology
                Informa UK Limited
                0272-4634
                1937-2809
                January 20 2023
                Affiliations
                [1 ]Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York 11794, U.S.A.,
                [2 ]Department of Biology, University of São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil,
                [3 ]Department of Zoology, Federal University of Paraná, Curitiba, Paraná 81531-980, Brazil
                [4 ]Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, U.K.
                Article
                10.1080/02724634.2022.2161909
                c57c0523-53ff-4560-9eef-971f504e8fc0
                © 2023
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content3,207

                Cited by11

                Most referenced authors793