73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Estimation of Fish Biomass Using Environmental DNA

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Environmental DNA (eDNA) from aquatic vertebrates has recently been used to estimate the presence of a species. We hypothesized that fish release DNA into the water at a rate commensurate with their biomass. Thus, the concentration of eDNA of a target species may be used to estimate the species biomass. We developed an eDNA method to estimate the biomass of common carp ( Cyprinus carpio L.) using laboratory and field experiments. In the aquarium, the concentration of eDNA changed initially, but reached an equilibrium after 6 days. Temperature had no effect on eDNA concentrations in aquaria. The concentration of eDNA was positively correlated with carp biomass in both aquaria and experimental ponds. We used this method to estimate the biomass and distribution of carp in a natural freshwater lagoon. We demonstrated that the distribution of carp eDNA concentration was explained by water temperature. Our results suggest that biomass data estimated from eDNA concentration reflects the potential distribution of common carp in the natural environment. Measuring eDNA concentration offers a non-invasive, simple, and rapid method for estimating biomass. This method could inform management plans for the conservation of ecosystems.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Molecular Detection of Vertebrates in Stream Water: A Demonstration Using Rocky Mountain Tailed Frogs and Idaho Giant Salamanders

          Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA) has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus). We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Effects of temperature on growth and metabolism in a Mediterranean population of European sea bass, Dicentrarchus labrax

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multiple acute temperature stress affects leucocyte populations and antibody responses in common carp, Cyprinus carpio L.

              M Engelsma (2003)
              Stress is a potential factor causing increased susceptibility of fish to pathogens. In this study, stress-induced immunological changes that may contribute to a decreased immune status were investigated. A 3 h drop in ambient water temperature of 9 degrees C was used as a relative mild and acute stress model for carp. Effects of this stressor on the dynamics of leucocyte populations were determined with specific monoclonal antibodies. The relative number of circulating B-lymphocytes in the total leucocyte population decreased significantly within 4 h after the onset of single or multiple cold shocks. This decrease was reversible, as B-lymphocyte numbers were restored within 24 h. Most probably, a redistribution of B-lymphocytes contributed to this phenomenon. In head kidney, an increase was measured in the relative number of B-lymphocytes. Granulocyte numbers showed opposite reactions: the percentage of granulocytes in the total leucocyte population nearly doubled in circulation and decreased significantly in the head kidney. This demonstrates that in vivo, a mild stressor differentially alters the distribution of leucocytes. In stressed carp, the percentage of apoptotic lymphocytes in blood is significantly higher compared with the unstressed animals. B-lymphocytes as well as Ig- lymphoid cells contributed to this increased apoptosis. Labelling of blood lymphocytes with a polyclonal antiserum against the glucocorticoid receptor also showed, besides B-lymphocytes, part of the Ig- lymphoid cell population to be glucocorticoid receptor positive. As the distribution of B-lymphocytes was substantially affected, the effect of temperature stress on T-lymphocyte-independent (trinitrophenyl-lipopolysaccharide) and T-lymphocyte-dependent (dinitrophenyl-keyhole limpet hemocyanin) humoral antibody responses was determined. Kinetics of the primary antibody response to the T-lymphocyte-independent antigen showed lower antibody titres in stressed carp during the onset of the immune response, implying a slower development of the antibody response against the T-lymphocyte-independent antigen.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                26 April 2012
                : 7
                : 4
                : e35868
                Affiliations
                [1 ]Research Institute for Humanity and Nature, Kyoto, Japan
                [2 ]Institute for Sustainable Sciences and Development, Hiroshima University, Higashi-Hiroshima, Japan
                [3 ]Department of Environmental Solution Technology, Faculty of Science and Technology, Ryukoku University, Otsu, Shiga, Japan
                Argonne National Laboratory, United States of America
                Author notes

                Conceived and designed the experiments: TT TM ZK. Performed the experiments: TT TM HY. Analyzed the data: TT TM HY HD. Wrote the paper: TT TM HD.

                Article
                PONE-D-11-22215
                10.1371/journal.pone.0035868
                3338542
                22563411
                c54af4f6-05f2-4646-8a49-0dc6e575f0b4
                Takahara et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 4 November 2011
                : 27 March 2012
                Page count
                Pages: 8
                Categories
                Research Article
                Biology
                Biochemistry
                Nucleic Acids
                DNA
                Biotechnology
                Environmental Biotechnology
                Ecology
                Ecological Environments
                Aquatic Environments
                Freshwater Environments
                Ecological Metrics
                Biomass (Ecology)
                Freshwater Ecology
                Population Biology
                Population Dynamics
                Population Ecology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article