0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Advancing gastric cancer treatment: nanotechnology innovations and future prospects

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gastric cancer (GC) is the fifth most common cancer worldwide, particularly prevalent in Asia, especially in China, where both its incidence and mortality rates are significantly high. Meanwhile, nanotechnology has demonstrated great potential in the treatment of GC. In particular, nanodrug delivery systems have improved therapeutic efficacy and targeting through various functional modifications, such as targeting peptides, tumor microenvironment responsiveness, and instrument-based methods. For instance, silica (SiO 2) has excellent biocompatibility and can be used as a drug carrier, with its porous structure enhancing drug loading capacity. Polymer nanoparticles regulate drug release rates and mechanisms by altering material composition and preparation methods. Lipid nanoparticles efficiently encapsulate hydrophilic drugs and promote cellular uptake, while carbon-based nanoparticles can be used in biosensors and drug delivery. Targets such as integrins, HER2 receptors, and the tumor microenvironment have been used to improve drug efficacy in GC treatment. Nanodrug delivery techniques not only enhance drug efficacy and delivery capabilities but also selectively target tumor cells. Currently, there is a lack of systematic summarization and synthesis regarding the relationship between nanodrug delivery systems and GC treatment, which to some extent hinders researchers and clinicians from efficiently searching for and referencing related studies, thereby reducing work efficiency. This study aims to systematically summarize the existing research on the relationship between nanodrug delivery systems and GC treatment, making it easier for professionals to search and reference, and thereby promoting further research on the role of nanodrug delivery systems and their clinical applications in GC. This review discusses the applications of functionalized nanocarriers in the treatment of GC in recent years, including surface modifications with targeted markers, the combination of phototherapy, chemotherapy, and immunotherapy, along with their advantages and challenges. It also examines the future prospects of targeted nanomaterials in GC treatment. The review particularly focuses on the combined application of nanocarriers in multiple treatment modalities, such as phototherapy, chemotherapy, and immunotherapy, demonstrating their potential in multimodal treatments. Furthermore, it thoroughly explores the specific challenges that nanocarriers face in GC treatment, such as biocompatibility, drug release control, and clinical translation issues, while providing a systematic outlook on future developments. Additionally, this study emphasizes the potential value and feasibility of nanocarriers in clinical applications, contrasting with most reviews that focus on basic research. Through these innovations, we offer new perspectives and directions for the development of nanotechnology in the treatment of GC.

          Related collections

          Most cited references179

          • Record: found
          • Abstract: found
          • Article: not found

          Gastric cancer

          Gastric cancer is the fifth most common cancer and the third most common cause of cancer death globally. Risk factors for the condition include Helicobacter pylori infection, age, high salt intake, and diets low in fruit and vegetables. Gastric cancer is diagnosed histologically after endoscopic biopsy and staged using CT, endoscopic ultrasound, PET, and laparoscopy. It is a molecularly and phenotypically highly heterogeneous disease. The main treatment for early gastric cancer is endoscopic resection. Non-early operable gastric cancer is treated with surgery, which should include D2 lymphadenectomy (including lymph node stations in the perigastric mesentery and along the celiac arterial branches). Perioperative or adjuvant chemotherapy improves survival in patients with stage 1B or higher cancers. Advanced gastric cancer is treated with sequential lines of chemotherapy, starting with a platinum and fluoropyrimidine doublet in the first line; median survival is less than 1 year. Targeted therapies licensed to treat gastric cancer include trastuzumab (HER2-positive patients first line), ramucirumab (anti-angiogenic second line), and nivolumab or pembrolizumab (anti-PD-1 third line).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Engineering precision nanoparticles for drug delivery

            In recent years, the development of nanoparticles has expanded into a broad range of clinical applications. Nanoparticles have been developed to overcome the limitations of free therapeutics and navigate biological barriers — systemic, microenvironmental and cellular — that are heterogeneous across patient populations and diseases. Overcoming this patient heterogeneity has also been accomplished through precision therapeutics, in which personalized interventions have enhanced therapeutic efficacy. However, nanoparticle development continues to focus on optimizing delivery platforms with a one-size-fits-all solution. As lipid-based, polymeric and inorganic nanoparticles are engineered in increasingly specified ways, they can begin to be optimized for drug delivery in a more personalized manner, entering the era of precision medicine. In this Review, we discuss advanced nanoparticle designs utilized in both non-personalized and precision applications that could be applied to improve precision therapies. We focus on advances in nanoparticle design that overcome heterogeneous barriers to delivery, arguing that intelligent nanoparticle design can improve efficacy in general delivery applications while enabling tailored designs for precision applications, thereby ultimately improving patient outcome overall.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Principles of nanoparticle design for overcoming biological barriers to drug delivery.

              Biological barriers to drug transport prevent successful accumulation of nanotherapeutics specifically at diseased sites, limiting efficacious responses in disease processes ranging from cancer to inflammation. Although substantial research efforts have aimed to incorporate multiple functionalities and moieties within the overall nanoparticle design, many of these strategies fail to adequately address these barriers. Obstacles, such as nonspecific distribution and inadequate accumulation of therapeutics, remain formidable challenges to drug developers. A reimagining of conventional nanoparticles is needed to successfully negotiate these impediments to drug delivery. Site-specific delivery of therapeutics will remain a distant reality unless nanocarrier design takes into account the majority, if not all, of the biological barriers that a particle encounters upon intravenous administration. By successively addressing each of these barriers, innovative design features can be rationally incorporated that will create a new generation of nanotherapeutics, realizing a paradigmatic shift in nanoparticle-based drug delivery.
                Bookmark

                Author and article information

                Contributors
                guolin@sj-hospital.org
                Journal
                Cell Biol Toxicol
                Cell Biol Toxicol
                Cell Biology and Toxicology
                Springer Netherlands (Dordrecht )
                0742-2091
                1573-6822
                20 November 2024
                20 November 2024
                2024
                : 40
                : 1
                : 101
                Affiliations
                [1 ]GRID grid.412467.2, ISNI 0000 0004 1806 3501, Department of Health Management, , Shengjing Hospital of China Medical University, ; Shenyang, 110004 P. R. China
                [2 ]GRID grid.412467.2, ISNI 0000 0004 1806 3501, Department of General Surgery, , Shengjing Hospital of China Medical University, ; 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning Province P. R. China
                Article
                9943
                10.1007/s10565-024-09943-9
                11579161
                39565472
                c5493ebe-0ebf-4819-9e1b-15a6b0788651
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

                History
                : 24 June 2024
                : 4 November 2024
                Funding
                Funded by: a grant from the Key Project of Science and Technology Committee of Shenyang Province
                Award ID: No. 202301235SY
                Award ID: No. 202301235SY
                Award Recipient :
                Categories
                Review
                Custom metadata
                © Springer Nature B.V. 2024

                Cell biology
                gc,nanotechnology,drug delivery,tumor microenvironment,integrins,her2 receptors
                Cell biology
                gc, nanotechnology, drug delivery, tumor microenvironment, integrins, her2 receptors

                Comments

                Comment on this article