0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association between CD4 + T cells ATP levels and disease progression in patients with non‑small cell lung cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introducing the exploration of stimulated CD4 + cells adenosine triphosphate (sATP CD4) levels for immune monitoring post non-small cell lung cancer (NSCLC) chemotherapy, the present study aimed to investigate its efficacy in gauging the potential risk of disease progression (PD) in patients with NSCLC. Therefore, a total of 89 patients with advanced NSCLC, who underwent chemotherapy between August 15 2022 and August 30 2023 at the Fifth Affiliated Hospital of Guangzhou Medical University (Guangzhou, China), were retrospectively studied. Patients were divided into the PD (n=21) and disease stability (non-PD; n=68) groups and their clinical data were compared. The thresholds for predicting PD were identified using receiver operating characteristics (ROC) curves. Multivariate logistic regression analysis was carried out to assess the association between peripheral blood markers and the incidence of PD. Therefore, post-chemotherapy, significant differences in white blood cell count, non-stimulated CD4 + cells ATP and sATP CD4 levels were obtained between patients in the PD and non-PD groups (P<0.05). In addition, sATP CD4 levels were notably decreased in the PD group compared with the non-PD group. Furthermore, ROC analysis revealed that the predictive threshold for PD was 224.5 ng/ml [area under the curve=0.887; 95% confidence interval, 0.811–0.963]. Additionally, patients with low immunity (ATP <224.5 ng/ml) exhibited a higher risk of PD compared with the high-immunity group (ATP >224.5 ng/ml; P<0.0001). Finally, multivariate logistic regression analysis suggested that sATP CD4 could serve as an independent factor for predicting NSCLC progression. Overall, the current study predicted that immune function could be possibly associated with the risk of PD in patients with NSCLC.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Oncology meets immunology: the cancer-immunity cycle.

          The genetic and cellular alterations that define cancer provide the immune system with the means to generate T cell responses that recognize and eradicate cancer cells. However, elimination of cancer by T cells is only one step in the Cancer-Immunity Cycle, which manages the delicate balance between the recognition of nonself and the prevention of autoimmunity. Identification of cancer cell T cell inhibitory signals, including PD-L1, has prompted the development of a new class of cancer immunotherapy that specifically hinders immune effector inhibition, reinvigorating and potentially expanding preexisting anticancer immune responses. The presence of suppressive factors in the tumor microenvironment may explain the limited activity observed with previous immune-based therapies and why these therapies may be more effective in combination with agents that target other steps of the cycle. Emerging clinical data suggest that cancer immunotherapy is likely to become a key part of the clinical management of cancer. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Cancer statistics in China and United States, 2022: profiles, trends, and determinants

            Background: The cancer burden in the United States of America (USA) has decreased gradually. However, China is experiencing a transition in its cancer profiles, with greater incidence of cancers that were previously more common in the USA. This study compared the latest cancer profiles, trends, and determinants between China and USA. Methods: This was a comparative study using open-source data. Cancer cases and deaths in 2022 were calculated using cancer estimates from GLOBOCAN 2020 and population estimates from the United Nations. Trends in cancer incidence and mortality rates in the USA used data from the Surveillance, Epidemiology, and End Results program and National Center for Health Statistics. Chinese data were obtained from cancer registry reports. Data from the Global Burden of Disease 2019 and a decomposition method were used to express cancer deaths as the product of four determinant factors. Results: In 2022, there will be approximately 4,820,000 and 2,370,000 new cancer cases, and 3,210,000 and 640,000 cancer deaths in China and the USA, respectively. The most common cancers are lung cancer in China and breast cancer in the USA, and lung cancer is the leading cause of cancer death in both. Age-standardized incidence and mortality rates for lung cancer and colorectal cancer in the USA have decreased significantly recently, but rates of liver cancer have increased slightly. Rates of stomach, liver, and esophageal cancer decreased gradually in China, but rates have increased for colorectal cancer in the whole population, prostate cancer in men, and other seven cancer types in women. Increases in adult population size and population aging were major determinants for incremental cancer deaths, and case-fatality rates contributed to reduced cancer deaths in both countries. Conclusions: The decreasing cancer burden in liver, stomach, and esophagus, and increasing burden in lung, colorectum, breast, and prostate, mean that cancer profiles in China and the USA are converging. Population aging is a growing determinant of incremental cancer burden. Progress in cancer prevention and care in the USA, and measures to actively respond to population aging, may help China to reduce the cancer burden.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics

              Tumours respond differently to immunotherapies compared with chemotherapeutic drugs, raising questions about the assessment of changes in tumour burden—a mainstay of evaluation of cancer therapeutics that provides key information about objective response and disease progression. A consensus guideline—iRECIST—was developed by the RECIST working group for the use of modified Response Evaluation Criteria in Solid Tumours (RECIST version 1.1) in cancer immunotherapy trials, to ensure consistent design and data collection, facilitate the ongoing collection of trial data, and ultimate validation of the guideline. This guideline describes a standard approach to solid tumour measurements and definitions for objective change in tumour size for use in trials in which an immunotherapy is used. Additionally, it defines the minimum datapoints required from future trials and those currently in development to facilitate the compilation of a data warehouse to use to later validate iRECIST. An unprecedented number of trials have been done, initiated, or are planned to test new immune modulators for cancer therapy using a variety of modified response criteria. This guideline will allow consistent conduct, interpretation, and analysis of trials of immunotherapies.
                Bookmark

                Author and article information

                Journal
                Oncol Lett
                Oncol Lett
                OL
                Oncology Letters
                D.A. Spandidos
                1792-1074
                1792-1082
                August 2024
                12 June 2024
                12 June 2024
                : 28
                : 2
                : 369
                Affiliations
                Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Huangpu, Guangzhou 510700, P.R. China
                Author notes
                Correspondence to: Dr Guifang Yu, Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu, Guangzhou 510700, P.R. China, E-mail: 526136010qq.com gexiaoli@ 123456aliyun.com
                [*]

                Contributed equally

                Article
                OL-28-2-14502
                10.3892/ol.2024.14502
                11200158
                38933807
                c548ae8e-82bc-448f-9aa7-6f406c15214d
                Copyright: © 2024 Ye et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 30 January 2024
                : 19 April 2024
                Funding
                Funded by: Guangzhou Characteristic Technology Project
                Award ID: 2023C-TS29
                Funded by: Research Project of Guangzhou Science and Technology Bureau
                Award ID: 202201010787
                The present study was supported by the Guangzhou Characteristic Technology Project (grant no. 2023C-TS29); and the Research Project of Guangzhou Science and Technology Bureau (grant no. 202201010787).
                Categories
                Articles

                Oncology & Radiotherapy
                non-small cell lung cancer,cd4+ t cells,adenosine triphosphate,chemotherapy,therapeutic efficacy

                Comments

                Comment on this article