1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Two Antibiotics, Ampicillin and Tetracycline, Exert Different Effects in HT-29 Colorectal Adenocarcinoma Cells in Terms of Cell Viability and Migration Capacity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antibiotics are considered the cornerstone of modern medicine; however, currently, antibiotic resistance has become a global health issue. Antibiotics also find new uses in the treatment of other pathologies as well as cancer. The present study aimed to verify the impact of tetracycline and ampicillin in a colorectal adenocarcinoma cell line, HT-29. The effects of the two antibiotics on cell viability and nucleus were evaluated by the means of MTT assay and the Hoechst staining method, respectively. The irritant potential at vascular level of the chorioallantoic membrane was tested by the HET-CAM assay. Treatment of HT-29 cells with the two antibiotics determined different effects: (i) tetracycline induced a dose- and time-dependent cytotoxic effect characterized by decreased cell viability, changes in cells morphology, apoptotic features (nuclear fragmentation), and inhibition of cellular migration, whereas (ii) ampicillin exerted a biphasic response—cytotoxic at low doses and proliferative at high concentrations. In terms of effect on blood vessels, both antibiotics exerted a mild irritant effect. These results are promising and could be considered as starting point for further in vitro studies to define the molecular mechanisms involved in the cytotoxic/proliferative effects.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases

            Each individual is provided with a unique gut microbiota profile that plays many specific functions in host nutrient metabolism, maintenance of structural integrity of the gut mucosal barrier, immunomodulation, and protection against pathogens. Gut microbiota are composed of different bacteria species taxonomically classified by genus, family, order, and phyla. Each human’s gut microbiota are shaped in early life as their composition depends on infant transitions (birth gestational date, type of delivery, methods of milk feeding, weaning period) and external factors such as antibiotic use. These personal and healthy core native microbiota remain relatively stable in adulthood but differ between individuals due to enterotypes, body mass index (BMI) level, exercise frequency, lifestyle, and cultural and dietary habits. Accordingly, there is not a unique optimal gut microbiota composition since it is different for each individual. However, a healthy host–microorganism balance must be respected in order to optimally perform metabolic and immune functions and prevent disease development. This review will provide an overview of the studies that focus on gut microbiota balances in the same individual and between individuals and highlight the close mutualistic relationship between gut microbiota variations and diseases. Indeed, dysbiosis of gut microbiota is associated not only with intestinal disorders but also with numerous extra-intestinal diseases such as metabolic and neurological disorders. Understanding the cause or consequence of these gut microbiota balances in health and disease and how to maintain or restore a healthy gut microbiota composition should be useful in developing promising therapeutic interventions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intestinal inflammation targets cancer-inducing activity of the microbiota.

              Inflammation alters host physiology to promote cancer, as seen in colitis-associated colorectal cancer (CRC). Here, we identify the intestinal microbiota as a target of inflammation that affects the progression of CRC. High-throughput sequencing revealed that inflammation modifies gut microbial composition in colitis-susceptible interleukin-10-deficient (Il10(-/-)) mice. Monocolonization with the commensal Escherichia coli NC101 promoted invasive carcinoma in azoxymethane (AOM)-treated Il10(-/-) mice. Deletion of the polyketide synthase (pks) genotoxic island from E. coli NC101 decreased tumor multiplicity and invasion in AOM/Il10(-/-) mice, without altering intestinal inflammation. Mucosa-associated pks(+) E. coli were found in a significantly high percentage of inflammatory bowel disease and CRC patients. This suggests that in mice, colitis can promote tumorigenesis by altering microbial composition and inducing the expansion of microorganisms with genotoxic capabilities.
                Bookmark

                Author and article information

                Journal
                Curr Oncol
                Curr Oncol
                curroncol
                Current Oncology
                MDPI
                1198-0052
                1718-7729
                04 July 2021
                August 2021
                : 28
                : 4
                : 2466-2480
                Affiliations
                [1 ]Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; florin_hut@ 123456yahoo.com (E.-F.H.); radulescu.matilda@ 123456umft.ro (M.R.); pilut.ciprian@ 123456umft.ro (N.P.); tavi@ 123456octaviancretu.ro (O.C.)
                [2 ]Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; dorinacoricovac@ 123456umft.ro (D.C.); iuliapinzaru@ 123456umft.ro (I.P.); cadehelean@ 123456umft.ro (C.D.)
                [3 ]Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
                Author notes
                [†]

                Authors with equal contribution.

                Author information
                https://orcid.org/0000-0002-5760-8872
                https://orcid.org/0000-0003-2295-1926
                Article
                curroncol-28-00225
                10.3390/curroncol28040225
                8293052
                34287268
                c52ebd43-5b50-46ee-a87f-7ba0e98a3d10
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 10 May 2021
                : 29 June 2021
                Categories
                Article

                Oncology & Radiotherapy
                antibiotics,tetracycline,ampicillin,colorectal adenocarcinoma,het-cam assay,hoechst staining

                Comments

                Comment on this article