30
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Advances and Challenges in Classical Galactosemia. Pathophysiology and Treatment

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract Classical galactosemia is caused by the genetic deficiency of galactose-1-phosphate-urydyl-transferase resulting in clinical symptoms development during the first weeks of life including jaundice, hypotonia, lethargy, emesis, hepatomegaly, among others. Currently, dietary restriction of galactose is considered the standard for classical galactosemia management. For several years, severe dietary galactose restriction was considered necessary, implying restriction not only of dairy products, but also fruits, vegetables, legumes, and viscera. Such management failed to improve or prevent the appearance of long-term complications, by contrast, such restrictive approach may lead to nutritional deficiencies development. Thus, the last consensus suggests guidelines that are more flexible. In addition, the lack of knowledge regarding the physiopathology of the disease, and the toxicity threshold of the metabolites accumulated, make even more difficult to propose novel and more effective therapeutic approaches. This review summarizes the current state of knowledge regarding classical galactosemia in terms of physiopathology, long-term complications, newborn screening and genetic variants and their implications on galactosemia treatment, summed to the challenges that researchers working on this disease must address in future studies including the analysis of galactose content in foods, galactose tolerance threshold and search for novel therapeutic targets.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          The adult galactosemic phenotype.

          Classic galactosemia is an autosomal recessive disorder due to galactose-1-phosphate uridyltransferase (GALT) deficiency. Newborn screening and early treatment do not completely prevent tremor, speech deficits, and diminished IQ in both sexes and premature ovarian insufficiency (POI) in women. Data on how individuals with galactosemia fare as adults will improve our ability to predict disease progression. Thirty-three adults (mean age = 32.6 ± 11.7 years; range = 18-59) with classic galactosemia, confirmed by genotype and undetectable GALT enzyme activity, were evaluated. Analyses assessed associations among age, genotype, clinical features and laboratory measures. The sample included 17 men and 16 women. Subjects exhibited cataracts (21%), low bone density (24%), tremor (46%), ataxia (15%), dysarthria (24%), and apraxia of speech (9%). Subjects reported depression (39%) and anxiety (67%). Mean full scale IQ was 88 ± 20, (range = 55-122). All subjects followed a dairy-free diet and 75-80% reported low intake of calcium and vitamin D. Mean height, weight and body mass were within established norms. All female subjects had been diagnosed with POI. One woman and two men had had children. Logistic regression analyses revealed no associations between age, genotype or gender with IQ, tremor, ataxia, dysarthria, apraxia of speech or anxiety. Each 10- year increment of age was associated with a twofold increase in odds of depression. Taken together, these data do not support the hypothesis that galactosemia is a progressive neurodegenerative disease. However, greater attention to depression, anxiety, and social relationships may relieve the impact of this disorder in adults.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The natural history of classic galactosemia: lessons from the GalNet registry

            Background Classic galactosemia is a rare inborn error of carbohydrate metabolism, caused by a severe deficiency of the enzyme galactose-1-phosphate uridylyltransferase (GALT). A galactose-restricted diet has proven to be very effective to treat the neonatal life-threatening manifestations and has been the cornerstone of treatment for this severe disease. However, burdensome complications occur despite a lifelong diet. For rare diseases, a patient disease specific registry is fundamental to monitor the lifespan pathology and to evaluate the safety and efficacy of potential therapies. In 2014, the international Galactosemias Network (GalNet) developed a web-based patient registry for this disease, the GalNet Registry. The aim was to delineate the natural history of classic galactosemia based on a large dataset of patients. Methods Observational data derived from 15 countries and 32 centers including 509 patients were acquired between December 2014 and July 2018. Results Most affected patients experienced neonatal manifestations (79.8%) and despite following a diet developed brain impairments (85.0%), primary ovarian insufficiency (79.7%) and a diminished bone mineral density (26.5%). Newborn screening, age at onset of dietary treatment, strictness of the galactose-restricted diet, p.Gln188Arg mutation and GALT enzyme activity influenced the clinical picture. Detection by newborn screening and commencement of diet in the first week of life were associated with a more favorable outcome. A homozygous p.Gln188Arg mutation, GALT enzyme activity of ≤ 1% and strict galactose restriction were associated with a less favorable outcome. Conclusion This study describes the natural history of classic galactosemia based on the hitherto largest data set. Electronic supplementary material The online version of this article (10.1186/s13023-019-1047-z) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GALT deficiency causes UDP-hexose deficit in human galactosemic cells.

              Previously we reported that stable transfection of human UDP-glucose pyrophosphorylase (hUGP2) rescued galactose-1-phosphate uridyltransferase (GALT)-deficient yeast from "galactose toxicity." Here we test in human cell lines the hypothesis that galactose toxicity was caused by excess accumulation of galactose-1-phosphate (Gal-1-P), inhibition of hUGP2, and UDP-hexose deficiency. We found that SV40-transformed fibroblasts derived from a galactosemic patient accumulated Gal-1-P from 1.2+/-0.4 to 5.2+/-0.5 mM and stopped growing when transferred from 0.1% glucose to 0.1% galactose. Control fibroblasts accumulated little Gal-1-P and continued to grow. The GALT-deficient cells had 157+/-10 micromoles UDP-glucose/100 g protein and 25+/-5 micromoles UDP-galactose/100 g protein when grown in 0.1% glucose. The control cells had 236+/-25 micromoles UDP- glucose/100 g protein and 82+/-10 micromoles UDP-galactose/100 g protein when grown in identical medium. When we transfected the GALT-deficient cells with either the hUGP2 or GALT gene, their UDP-glucose content increased to 305+/-28 micromoles/100 g protein (hUGP2-transfected) and 210+/-13 micromoles/100 g protein (GALT-transfected), respectively. Similarly, UDP-galactose content increased to 75+/-12 micromoles/100 g protein (hUGP2-transfected) and 55+/-9 micromoles/100 g protein (GALT-transfected), respectively. Though the GALT-transfected cells grew in 0.1% galactose with little accumulation of Gal-1-P (0.2+/-0.02 mM), the hUGP2-transfected cells grew but accumulated some Gal-1-P (3.1+/-0.4 mM). We found that 2.5 mM Gal-1-P increased the apparent KM of purified hUGP2 for glucose-1-phosphate from 19.7 microM to 169 microM, without changes in apparent Vmax. The Ki of the reaction was 0.47 mM. Gal-1-P also inhibited UDP-N-acetylglucosamine pyrophosphorylase, which catalyzes the formation of UDP-N-acetylglucosamine. We conclude that intracellular concentrations of Gal-1-P found in classic galactosemia inhibit UDP-hexose pyrophosphorylases and reduce the intracellular concentrations of UDP-hexoses. Reduced Sambucus nigra agglutinin binding to glycoproteins isolated from cells with increased Gal-1-P is consistent with the resultant inhibition of glycoprotein glycosylation.
                Bookmark

                Author and article information

                Journal
                jiems
                Journal of Inborn Errors of Metabolism and Screening
                J. inborn errors metab. screen.
                Latin American Society Inborn Errors and Neonatal Screening (SLEIMPN); Instituto Genética para Todos (IGPT) (Porto Alegre, RS, Brazil )
                2326-4594
                2022
                : 10
                : e20210026
                Affiliations
                [2] Santiago Santiago de Chile orgnameUniversidad de Chile orgdiv1Instituto de Nutrición y Tecnología de los Alimentos orgdiv2Laboratorio de Genética y Enfermedades Metabólicas Chile
                [1] Bogotá orgnameUniversidad Javeriana orgdiv1Facultad de Ciencias orgdiv2Pontificia, Instituto de Errores Innatos del Metabolismo Colombia
                Article
                S2326-45942022000100401 S2326-4594(22)01000000401
                10.1590/2326-4594-jiems-2021-0026
                c4f83f49-6dc8-41c7-97d2-6132bed5b2e6

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 21 December 2021
                : 08 July 2021
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 91, Pages: 0
                Product

                SciELO Brazil

                Categories
                Review

                Treatment,Classical Galactosemia
                Treatment, Classical Galactosemia

                Comments

                Comment on this article