7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Carotenoids from the extreme halophilic archaeon Haloterrigena turkmenica: identification and antioxidant activity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins.

          Epidemiologic data indicate that individuals with low plasma concentrations of carotenoids and antioxidant vitamins and those who smoke cigarettes are at increased risk for age-related macular degeneration (AMD). Laboratory data show that carotenoids and antioxidant vitamins help to protect the retina from oxidative damage initiated in part by absorption of light. Primate retinas accumulate two carotenoids, lutein and zeaxanthin, as the macular pigment, which is most dense at the center of the fovea and declines rapidly in more peripheral regions. The retina also distributes alpha-tocopherol (vitamin E) in a nonuniform spatial pattern. The region of monkey retinas where carotenoids and vitamin E are both low corresponds with a locus where early signs of AMD often appear in humans. The combination of evidence suggests that carotenoids and antioxidant vitamins may help to retard some of the destructive processes in the retina and the retinal pigment epithelium that lead to age-related degeneration of the macula.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Goldacre Review: Carotenoids in nature: insights from plants and beyond

            Carotenoids are natural isoprenoid pigments that provide leaves, fruits, vegetables and flowers with distinctive yellow, orange and some reddish colours as well as several aromas in plants. Their bright colours serve as attractants for pollination and seed dispersal. Carotenoids comprise a large family of C40 polyenes and are synthesised by all photosynthetic organisms, aphids, some bacteria and fungi alike. In animals carotenoid derivatives promote health, improve sexual behaviour and are essential for reproduction. As such, carotenoids are commercially important in agriculture, food, health and the cosmetic industries. In plants, carotenoids are essential components required for photosynthesis, photoprotection and the production of carotenoid-derived phytohormones, including ABA and strigolactone. The carotenoid biosynthetic pathway has been extensively studied in a range of organisms providing an almost complete pathway for carotenogenesis. A new wave in carotenoid biology has revealed implications for epigenetic and metabolic feedback control of carotenogenesis. Developmental and environmental signals can regulate carotenoid gene expression thereby affecting carotenoid accumulation. This review highlights mechanisms controlling (1) the first committed step in phytoene biosynthesis, (2) flux through the branch to synthesis of α- and β-carotenes and (3) metabolic feedback signalling within and between the carotenoid, MEP and ABA pathways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Marine Carotenoids: Biological Functions and Commercial Applications

              Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological functions of carotenoids relevant for life on earth. Biological properties of carotenoids allow for a wide range of commercial applications. Indeed, recent interest in the carotenoids has been mainly for their nutraceutical properties. A large number of scientific studies have confirmed the benefits of carotenoids to health and their use for this purpose is growing rapidly. In addition, carotenoids have traditionally been used in food and animal feed for their color properties. Carotenoids are also known to improve consumer perception of quality; an example is the addition of carotenoids to fish feed to impart color to farmed salmon.
                Bookmark

                Author and article information

                Journal
                Extremophiles
                Extremophiles
                Springer Nature America, Inc
                1431-0651
                1433-4909
                September 2017
                August 12 2017
                September 2017
                : 21
                : 5
                : 933-945
                Article
                10.1007/s00792-017-0954-y
                28803263
                c4f1fe3d-e924-41fe-80a1-876aebf24ab8
                © 2017

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article