0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A circadian clock regulates efflux by the blood-brain barrier in mice and human cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The blood-brain barrier (BBB) is critical for neural function. We report here circadian regulation of the BBB in mammals. Efflux of xenobiotics by the BBB oscillates in mice, with highest levels during the active phase and lowest during the resting phase. This oscillation is abrogated in circadian clock mutants. To elucidate mechanisms of circadian regulation, we profiled the transcriptome of brain endothelial cells; interestingly, we detected limited circadian regulation of transcription, with no evident oscillations in efflux transporters. We recapitulated the cycling of xenobiotic efflux using a human microvascular endothelial cell line to find that the molecular clock drives cycling of intracellular magnesium through transcriptional regulation of TRPM7, which appears to contribute to the rhythm in efflux. Our findings suggest that considering circadian regulation may be important when therapeutically targeting efflux transporter substrates to the CNS.

          Abstract

          The blood-brain barrier is critical for neural function. Here, the authors show that efflux of xenobiotics through the BBB follows a circadian rhythm in mice and human cells.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Sequence Alignment/Map format and SAMtools

          Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: rd@sanger.ac.uk
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            STAR: ultrafast universal RNA-seq aligner.

            Accurate alignment of high-throughput RNA-seq data is a challenging and yet unsolved problem because of the non-contiguous transcript structure, relatively short read lengths and constantly increasing throughput of the sequencing technologies. Currently available RNA-seq aligners suffer from high mapping error rates, low mapping speed, read length limitation and mapping biases. To align our large (>80 billon reads) ENCODE Transcriptome RNA-seq dataset, we developed the Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure. STAR outperforms other aligners by a factor of >50 in mapping speed, aligning to the human genome 550 million 2 × 76 bp paired-end reads per hour on a modest 12-core server, while at the same time improving alignment sensitivity and precision. In addition to unbiased de novo detection of canonical junctions, STAR can discover non-canonical splices and chimeric (fusion) transcripts, and is also capable of mapping full-length RNA sequences. Using Roche 454 sequencing of reverse transcription polymerase chain reaction amplicons, we experimentally validated 1960 novel intergenic splice junctions with an 80-90% success rate, corroborating the high precision of the STAR mapping strategy. STAR is implemented as a standalone C++ code. STAR is free open source software distributed under GPLv3 license and can be downloaded from http://code.google.com/p/rna-star/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sleep drives metabolite clearance from the adult brain.

              The conservation of sleep across all animal species suggests that sleep serves a vital function. We here report that sleep has a critical function in ensuring metabolic homeostasis. Using real-time assessments of tetramethylammonium diffusion and two-photon imaging in live mice, we show that natural sleep or anesthesia are associated with a 60% increase in the interstitial space, resulting in a striking increase in convective exchange of cerebrospinal fluid with interstitial fluid. In turn, convective fluxes of interstitial fluid increased the rate of β-amyloid clearance during sleep. Thus, the restorative function of sleep may be a consequence of the enhanced removal of potentially neurotoxic waste products that accumulate in the awake central nervous system.
                Bookmark

                Author and article information

                Contributors
                zhangshi@pennmedicine.upenn.edu
                amita@pennmedicine.upenn.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                27 January 2021
                27 January 2021
                2021
                : 12
                : 617
                Affiliations
                [1 ]GRID grid.25879.31, ISNI 0000 0004 1936 8972, Chronobiology and Sleep Institute, , Perelman School of Medicine at the University of Pennsylvania, ; Philadelphia, PA USA
                [2 ]GRID grid.25879.31, ISNI 0000 0004 1936 8972, Howard Hughes Medical Institute, , Perelman School of Medicine at the University of Pennsylvania, ; Philadelphia, PA USA
                [3 ]GRID grid.25879.31, ISNI 0000 0004 1936 8972, Institute for Translational Medicine and Therapeutics (ITMAT), Perelman School of Medicine, , University of Pennsylvania, ; Philadelphia, PA USA
                Author information
                http://orcid.org/0000-0002-6672-2044
                http://orcid.org/0000-0002-3965-5624
                http://orcid.org/0000-0003-4831-225X
                http://orcid.org/0000-0001-7354-9641
                Article
                20795
                10.1038/s41467-020-20795-9
                7841146
                33504784
                c4e2a106-983c-474d-b801-4396d328e139
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 23 August 2019
                : 18 December 2020
                Funding
                Funded by: FundRef https://doi.org/10.13039/100006108, U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS);
                Award ID: 5UL1TR000003
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/100000011, Howard Hughes Medical Institute (HHMI);
                Funded by: FundRef https://doi.org/10.13039/100000065, U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS);
                Award ID: R37NS048471
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                circadian rhythms,blood-brain barrier,circadian rhythms and sleep
                Uncategorized
                circadian rhythms, blood-brain barrier, circadian rhythms and sleep

                Comments

                Comment on this article