5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intraocular lens power calculations in eyes with pseudoexfoliation syndrome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To compare refractive outcomes after cataract surgery in pseudoexfoliation syndrome (PEX) and control eyes and to investigate the accuracy of 3 intraocular lens (IOL) calculation formulas in these eyes. In this prospective comparative study 42 eyes (PEX group) and 38 eyes (control group) of 80 patients were included. The follow-up was 3 months. The refractive prediction error (RPE), mean absolute error (MAE), median absolute error (MedAE) and the percentages of eyes within ± 0.25 D, ± 0.5 D, ± 1.0 D and ± 2.0 D of prediction error were calculated. Three IOL calculation formulas (SRK/T, Barrett Universal II and Hill-RBF) were evaluated. PEX produced statistically significantly higher mean absolute errors and lower percentages of eyes within ± 0.5 D than control eyes in all investigated IOL calculation formulas. There were no statistically significant differences in the median absolute errors between the 3 formulas in either PEX or control eyes. Refractive outcomes after cataract surgery are statistically significantly worse in PEX than in control eyes. All three IOL calculation formulas produced similar results in both PEX and control eyes.

          Trial registration: ClinicalTrials.gov registration number NCT04783909.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          The Lens Opacities Classification System III. The Longitudinal Study of Cataract Study Group.

          To develop the Lens Opacities Classification System III (LOCS III) to overcome the limitations inherent in lens classification using LOCS II. These limitations include unequal intervals between standards, only one standard for color grading, use of integer grading, and wide 95% tolerance limits. The LOCS III contains an expanded set of standards that were selected from the Longitudinal Study of Cataract slide library at the Center for Clinical Cataract Research, Boston, Mass. It consists of six slit-lamp images for grading nuclear color (NC) and nuclear opalescence (NO), five retroillumination images for grading cortical cataract (C), and five retroillumination images for grading posterior subcapsular (P) cataract. Cataract severity is graded on a decimal scale, and the standards have regularly spaced intervals on a decimal scale. The 95% tolerance limits are reduced from 2.0 for each class with LOCS II to 0.7 for nuclear opalescence, 0.7 for nuclear color, 0.5 for cortical cataract, and 1.0 for posterior subcapsular cataract with the LOCS III, with excellent interobserver agreement. The LOCS III is an improved LOCS system for grading slit-lamp and retroillumination images of age-related cataract.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sources of error in intraocular lens power calculation.

            To identify and quantify sources of error in the refractive outcome of cataract surgery. AMO Groningen BV, Groningen, The Netherlands. Means and standard deviations (SDs) of parameters that influence refractive outcomes were taken or derived from the published literature to the extent available. To evaluate their influence on refraction, thick-lens ray tracing that allowed for asphericity was used. The numerical partial derivative of each parameter with respect to spectacle refraction was calculated. The product of the partial derivative and the SD for a parameter equates to its SD, expressed as spectacle diopters, which squared is the variance. The error contribution of a parameter is its variance relative to the sum of the variances of all parameters. Preoperative estimation of postoperative intraocular lens (IOL) position, postoperative refraction determination, and preoperative axial length (AL) measurement were the largest contributors of error (35%, 27%, and 17%, respectively), with a mean absolute error (MAE) of 0.6 diopter (D) for an eye of average dimensions. Pupil size variation in the population accounted for 8% of the error, and variability in IOL power, 1%. Improvement in refractive outcome requires better methods for predicting the postoperative IOL position. Measuring AL by partial coherence interferometry may be of benefit. Autorefraction increases precision in outcome measurement. Reducing these 3 major error sources with means available today reduces the MAE to 0.4 D. Using IOLs that compensate for the spherical aberration of the cornea would eliminate the influence of pupil size. Further improvement would require measuring the asphericity of the anterior surface and radius of the posterior surface of the cornea.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Development of the SRK/T intraocular lens implant power calculation formula

                Bookmark

                Author and article information

                Contributors
                aleksandra.wlaz@icloud.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                24 September 2021
                24 September 2021
                2021
                : 11
                : 19071
                Affiliations
                GRID grid.411484.c, ISNI 0000 0001 1033 7158, Department of Diagnostics and Microsurgery of Glaucoma, , Medical University, ; Chmielna 1, 20-079 Lublin, Poland
                Article
                98675
                10.1038/s41598-021-98675-5
                8463556
                34561548
                c4df07c9-31cf-4f2c-ba49-d58ea7384619
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 5 July 2021
                : 13 September 2021
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                eye diseases,lens diseases
                Uncategorized
                eye diseases, lens diseases

                Comments

                Comment on this article