18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cardiac telocytes inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted cdip1 silencing to improve angiogenesis following myocardial infarction

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Promotion of cardiac angiogenesis in ischemic myocardium is a critical strategy for repairing and regenerating the myocardium after myocardial infarction (MI). Currently, effective methods to aid in the survival of endothelial cells, to avoid apoptosis in ischemic myocardium and to achieve long-term cardiac angiogenesis are still being pursued. Here, we investigated whether cardiac telocyte (CT)-endothelial cell communication suppresses apoptosis and promotes the survival of endothelial cells to facilitate cardiac angiogenesis during MI.

          Methods: CT exosomes were isolated from CT conditioned medium, and their miRNA profile was characterized by small RNA sequencing. A rat model of left anterior descending coronary artery ligation (LAD)-mediated MI was assessed with histology for infarct size and fibrosis, immunostaining for angiogenesis and cell apoptosis and echocardiography to evaluate the therapeutic effects. Cardiac microvascular endothelial cells (CMECs) and the LAD-MI model treated with CT exosomes or CT exosomal miRNA-21-5p in vitro and in vivo were assessed with cellular and molecular techniques to demonstrate the underlying mechanism.

          Results: CTs exert therapeutic effects on MI via the potent paracrine effects of CT exosomes to facilitate the inhibition of apoptosis and survival of CMECs and promote cardiac angiogenesis. A novel mechanism of CTs is revealed, in which CT-endothelial cell communication suppresses apoptosis and promotes the survival of endothelial cells in the pathophysiological myocardium. CT exosomal miRNA-21-5p targeted and silenced the cell death inducing p53 target 1 ( Cdip1) gene and thus down-regulated the activated caspase-3, which then inhibited the apoptosis of recipient endothelial cells under ischemic and hypoxic conditions, facilitating angiogenesis and regeneration following MI.

          Conclusions: The present study is the first to show that CTs inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted Cdip1 silencing to improve angiogenesis in myocardial infarction. It is believed that these novel findings and the discovery of cellular and molecular mechanisms will provide new opportunities to tailor novel cardiac cell therapies and cell-free therapies for the functional and structural regeneration of the injured myocardium.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Extracellular vesicles: Exosomes, microvesicles, and friends

          Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, and RNA. Deficiencies in our knowledge of the molecular mechanisms for EV formation and lack of methods to interfere with the packaging of cargo or with vesicle release, however, still hamper identification of their physiological relevance in vivo. In this review, we focus on the characterization of EVs and on currently proposed mechanisms for their formation, targeting, and function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Communication by Extracellular Vesicles: Where We Are and Where We Need to Go.

            In multicellular organisms, distant cells can exchange information by sending out signals composed of single molecules or, as increasingly exemplified in the literature, via complex packets stuffed with a selection of proteins, lipids, and nucleic acids, called extracellular vesicles (EVs; also known as exosomes and microvesicles, among other names). This Review covers some of the most striking functions described for EV secretion but also presents the limitations on our knowledge of their physiological roles. While there are initial indications that EV-mediated pathways operate in vivo, the actual nature of the EVs involved in these effects still needs to be clarified. Here, we focus on the context of tumor cells and their microenvironment, but similar results and challenges apply to all patho/physiological systems in which EV-mediated communication is proposed to take place.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exosomes--vesicular carriers for intercellular communication.

              Cells release different types of vesicular carriers of membrane and cytosolic components into the extracellular space. These vesicles are generated within the endosomal system or at the plasma membrane. Among the various kinds of secreted membrane vesicles, exosomes are vesicles with a diameter of 40-100 nm that are secreted upon fusion of multivesicular endosomes with the cell surface. Exosomes transfer not only membrane components but also nucleic acid between different cells, emphasizing their role in intercellular communication. This ability is likely to underlie the different physiological and pathological events, in which exosomes from different cell origins have been implicated. Only recently light have been shed on the subcellular compartments and mechanisms involved in their biogenesis and secretion opening new avenues to understand their functions.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2021
                1 January 2021
                : 11
                : 1
                : 268-291
                Affiliations
                [1 ]The First Affiliated Hospital, Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, China.
                [2 ]Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, China.
                [3 ]Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou 510632, China.
                [4 ]International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangdong Province, Guangzhou 510632, China.
                [5 ]Department of Developmental and Regenerative Biology, Jinan University, Guangzhou 510632, China.
                [6 ]Institute of Anatomy, Department of Neuroanatomy, University of Bonn, Germany.
                [7 ]Stem Cell and Regeneration TRP, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong.
                [8 ]Medical Department, MSH Medical School Hamburg, Germany.
                [9 ]Cancer Institute of New Jersey, Department of Medical Oncology, Robert Wood Johnson of Medical School, USA.
                Author notes
                ✉ Corresponding authors: Dongqing Cai and Xufeng Qi, Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632. P.R. China. Fax number: 0086-20-85222711; Telephone number: 0086-20-85222687; E-mail: tdongbme@ 123456jnu.edu.cn and qixufeng@ 123456jnu.edu.cn .

                *Equal contributions to this work.

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov11p0268
                10.7150/thno.47021
                7681094
                33391474
                c486074e-05f9-442d-8c63-cca132a28910
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 14 April 2020
                : 22 September 2020
                Categories
                Research Paper

                Molecular medicine
                cardiac telocytes,apoptosis of endothelial cells,regeneration of myocardial infarction,exosomal mir-21,cdip1 gene

                Comments

                Comment on this article