57
views
0
recommends
+1 Recommend
0 collections
    5
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Brain activation during phonological and semantic processing of Chinese characters in deaf signers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previous studies found altered brain function in deaf individuals reading alphabetic orthographies. However, it is not known whether similar alterations of brain function are characteristic of non-alphabetic writing systems and whether alterations are specific to certain kinds of lexical tasks. Here we examined differences in brain activation between Chinese congenitally deaf individuals (CD) and hearing controls (HC) during character reading tasks requiring phonological and semantic judgments. For both tasks, we found that CD showed less activation than HC in left inferior frontal gyrus, but greater activation in several right hemisphere regions including inferior frontal gyrus, angular gyrus, and inferior temporal gyrus. Although many group differences were similar across tasks, greater activation in right middle frontal gyrus was more pronounced for the rhyming compared to the meaning task. Finally, within the deaf individuals better performance on the rhyming task was associated with less activation in right inferior parietal lobule and angular gyrus. Our results in Chinese CD are broadly consistent with previous studies in alphabetic languages suggesting greater engagement of inferior frontal gyrus and inferior parietal cortex for reading that is largely independent of task, with the exception of right middle frontal gyrus for phonological processing. The brain behavior correlations potentially indicate that CD that more efficiently use the right hemisphere are better readers.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Evaluation of the dual route theory of reading: a metanalysis of 35 neuroimaging studies.

          Numerous studies concerned with cerebral structures underlying word reading have been published during the last decade. A few controversies, however, together with methodological or theoretical discrepancies between laboratories, still contribute to blurring the overall view of advances effected in neuroimaging. Carried out within the dual route of reading framework, the aim of this metanalysis was to provide an objective picture of these advances. To achieve this, we used an automated analysis method based on the inventory of activation peaks issued from word or pseudoword reading contrasts of 35 published neuroimaging studies. A first result of this metanalysis was that no cluster of activations has been found more recruited by word than pseudoword reading, implying that the first steps of word access may be common to word and word-like stimuli and would take place within a left occipitotemporal region (previously referred to as the Visual Word Form Area-VWFA) situated in the ventral route, at the junction between inferior temporal and fusiform gyri. The results also indicated the existence of brain regions predominantly involved in one of the two routes to access word. The graphophonological conversion seems indeed to rely on left lateralized brain structures such as superior temporal areas, supramarginal gyrus, and the opercular part of the inferior frontal gyrus, these last two regions reflecting a greater load in working memory during such an access. The lexicosemantic route is thought to arise from the coactivation of the VWFA and semantic areas. These semantic areas would encompass a basal inferior temporal area, the posterior part of the middle temporal gyrus, and the triangular part of inferior frontal gyrus. These results confirm the suitability of the dual route framework to account for activations observed in nonpathological subjects while they read.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hierarchical coding of letter strings in the ventral stream: dissecting the inner organization of the visual word-form system.

            Visual word recognition has been proposed to rely on a hierarchy of increasingly complex neuronal detectors, from individual letters to bigrams and morphemes. We used fMRI to test whether such a hierarchy is present in the left occipitotemporal cortex, at the site of the visual word-form area, and with an anterior-to-posterior progression. We exposed adult readers to (1) false-font strings; (2) strings of infrequent letters; (3) strings of frequent letters but rare bigrams; (4) strings with frequent bigrams but rare quadrigrams; (5) strings with frequent quadrigrams; (6) real words. A gradient of selectivity was observed through the entire span of the occipitotemporal cortex, with activation becoming more selective for higher-level stimuli toward the anterior fusiform region. A similar gradient was also seen in left inferior frontoinsular cortex. Those gradients were asymmetrical in favor of the left hemisphere. We conclude that the left occipitotemporal visual word-form area, far from being a homogeneous structure, presents a high degree of functional and spatial hierarchical organization which must result from a tuning process during reading acquisition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Specific reading disability (dyslexia): what have we learned in the past four decades?

              We summarize some of the most important findings from research evaluating the hypothesized causes of specific reading disability ('dyslexia') over the past four decades. After outlining components of reading ability, we discuss manifest causes of reading difficulties, in terms of deficiencies in component reading skills that might lead to such difficulties. The evidence suggests that inadequate facility in word identification due, in most cases, to more basic deficits in alphabetic coding is the basic cause of difficulties in learning to read. We next discuss hypothesized deficiencies in reading-related cognitive abilities as underlying causes of deficiencies in component reading skills. The evidence in these areas suggests that, in most cases, phonological skills deficiencies associated with phonological coding deficits are the probable causes of the disorder rather than visual, semantic, or syntactic deficits, although reading difficulties in some children may be associated with general language deficits. Hypothesized deficits in general learning abilities (e.g., attention, association learning, cross-modal transfer etc.) and low-level sensory deficits have weak validity as causal factors in specific reading disability. These inferences are, by and large, supported by research evaluating the biological foundations of dyslexia. Finally, evidence is presented in support of the idea that many poor readers are impaired because of inadequate instruction or other experiential factors. This does not mean that biological factors are not relevant, because the brain and environment interact to produce the neural networks that support reading acquisition. We conclude with a discussion of the clinical implications of the research findings, focusing on the need for enhanced instruction.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                16 April 2014
                2014
                : 8
                : 211
                Affiliations
                [1] 1State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University Beijing, China
                [2] 2Department of Communication Sciences and Disorders, Northwestern University Evanston, IL, USA
                [3] 3Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University Beijing, China
                Author notes

                Edited by: Gui Xue, Beijing Normal University, China

                Reviewed by: David Corina, UC Davis, USA; Jie Zhuang, Duke University, USA

                *Correspondence: James R. Booth, Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Frances Searle Building, 2240 Campus Drive, Room 2-352, Evanston, IL 60208-2952, USA e-mail: j-booth@ 123456northwestern.edu ;
                Guosheng Ding, State Key Laboratory of Cognitive Neuroscience and Learning, Brain Imaging Centre, Beijing Normal University, Rm. 206, 19 Xinjiekou Wai Street, Haidian, Beijing 100875, China e-mail: dinggsh@ 123456bnu.edu.cn

                This article was submitted to the journal Frontiers in Human Neuroscience.

                Article
                10.3389/fnhum.2014.00211
                3997016
                24795593
                c4681c22-86a7-4287-95c5-b992bdd3ef6c
                Copyright © 2014 Li, Peng, Liu, Booth and Ding.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 July 2013
                : 26 March 2014
                Page count
                Figures: 3, Tables: 4, Equations: 0, References: 76, Pages: 11, Words: 9399
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                congenitally deaf,reading,rhyming,meaning,fmri
                Neurosciences
                congenitally deaf, reading, rhyming, meaning, fmri

                Comments

                Comment on this article