35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of vaccination against paratuberculosis on tuberculosis in goats: diagnostic interferences and cross-protection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Most countries carrying out campaigns of bovine tuberculosis (TB) eradication impose a ban on the use of mycobacterial vaccines in cattle. However, vaccination against paratuberculosis (PTB) in goats is often allowed even when its effect on TB diagnosis has not been fully evaluated. To address this issue, goat kids previously vaccinated against PTB were experimentally infected with TB.

          Results

          Evaluation of interferon-γ (IFN-γ) secretion induced by avian and bovine tuberculins (PPD) showed a predominant avian PPD-biased response in the vaccinated group from week 4 post-vaccination onward. Although 60% of the animals were bovine reactors at week 14, avian PPD-biased responses returned at week 16. After challenge with M. caprae, the IFN-γ responses radically changed to show predominant bovine PPD-biased responses from week 18 onward. In addition, cross-reactions with bovine PPD that had been observed in the vaccinated group at week 14 were reduced when using the M. tuberculosis complex-specific antigens ESAT-6/CFP-10 and Rv3615c as new DIVA (differentiation of infected and vaccinated animals) reagents, which further maintained sensitivity post-challenge. Ninety percent of the animals reacted positively to the tuberculin cervical comparative intradermal test performed at 12 weeks post-infection. Furthermore, post-mortem analysis showed reductions in tuberculous lesions and bacterial burden in some vaccinated animals, particularly expressed in terms of the degree of extrapulmonary dissemination of TB infection.

          Conclusions

          Our results suggest a degree of interference of PTB vaccination with current TB diagnostics that can be fully mitigated when using new DIVA reagents. A partial protective effect associated with vaccination was also observed in some vaccinated animals.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Correlation of ESAT-6-specific gamma interferon production with pathology in cattle following Mycobacterium bovis BCG vaccination against experimental bovine tuberculosis.

          Vaccine development and the understanding of the pathology of bovine tuberculosis in cattle would be greatly facilitated by the definition of immunological correlates of protection and/or pathology. To address these questions, cattle were vaccinated with Mycobacterium bovis bacillus Calmette-Guérin (BCG) and were then challenged with virulent M. bovis. Applying a semiquantitative pathology-scoring system, we were able to demonstrate that BCG vaccination imparted significant protection by reducing the disease severity on average by 75%. Analysis of cellular immune responses following M. bovis challenge demonstrated that proliferative T-cell and gamma interferon (IFN-gamma) responses towards the M. bovis-specific antigen ESAT-6, whose gene is absent from BCG, were generally low in vaccinated animals but were high in all nonvaccinated calves. Importantly, the amount of ESAT-6-specific IFN-gamma measured by enzyme-linked immunosorbent assay after M. bovis challenge, but not the frequency of responding cells, correlated positively with the degree of pathology found 18 weeks after infection. Diagnostic reagents based on antigens not present in BCG, like ESAT-6 and CFP-10, were still able to distinguish BCG-vaccinated, diseased animals from BCG-vaccinated animals without signs of disease. In summary, our results suggest that the determination of ESAT-6-specific IFN-gamma, while not a direct correlate of protection, constitutes nevertheless a useful prognostic immunological marker predicting both vaccine efficacy and disease severity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis.

            Previous work with small-animal laboratory models of tuberculosis has shown that vaccination strategies based on heterologous prime-boost protocols using Mycobacterium bovis bacillus Calmette-Guérin (BCG) to prime and modified vaccinia virus Ankara strain (MVA85A) or recombinant attenuated adenoviruses (Ad85A) expressing the mycobacterial antigen Ag85A to boost may increase the protective efficacy of BCG. Here we report the first efficacy data on using these vaccines in cattle, a natural target species of tuberculous infection. Protection was determined by measuring development of disease as an end point after M. bovis challenge. Either Ad85A or MVA85A boosting resulted in protection superior to that given by BCG alone: boosting BCG with MVA85A or Ad85A induced significant reduction in pathology in four/eight parameters assessed, while BCG vaccination alone did so in only one parameter studied. Protection was particularly evident in the lungs of vaccinated animals (median lung scores for naïve and BCG-, BCG/MVA85A-, and BCG/Ad85A-vaccinated animals were 10.5, 5, 2.5, and 0, respectively). The bacterial loads in lymph node tissues were also reduced after viral boosting of BCG-vaccinated calves compared to those in BCG-only-vaccinated animals. Analysis of vaccine-induced immunity identified memory responses measured by cultured enzyme-linked immunospot assay as well as in vitro interleukin-17 production as predictors of vaccination success, as both responses, measured before challenge, correlated positively with the degree of protection. Therefore, this study provides evidence of improved protection against tuberculosis by viral booster vaccination in a natural target species and has prioritized potential correlates of vaccine efficacy for further evaluation. These findings also have implications for human tuberculosis vaccine development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Use of synthetic peptides derived from the antigens ESAT-6 and CFP-10 for differential diagnosis of bovine tuberculosis in cattle.

              In Great Britain an independent scientific review for the government has concluded that the development of a cattle vaccine against Mycobacterium bovis infection holds the best long-term prospect for tuberculosis control in British herds. A precondition for vaccination is the development of a complementary diagnostic test to differentiate between vaccinated animals and those infected with M. bovis so that testing and slaughter-based control strategies can continue alongside vaccination. To date bacillus Calmette-Guérin (BCG), an attenuated strain of M. bovis, is the only available vaccine for the prevention of tuberculosis. However, tests based on tuberculin purified protein derivative cannot distinguish between M. bovis infection and BCG vaccination. Therefore, specific antigens expressed by M. bovis but absent from BCG constitute prime candidates for differential diagnostic reagents. Recently, two such antigens, ESAT-6 and CFP-10, have been reported to be promising candidates as diagnostic reagents for the detection of M. bovis infection in cattle. Here we report the identification of promiscuous peptides of CFP-10 that were recognized by M. bovis-infected cattle. Five of these peptides were formulated into a peptide cocktail together with five peptides derived from ESAT-6. Using this peptide cocktail in T-cell assays, M. bovis-infected animals were detected, while BCG-vaccinated or Mycobacterium avium-sensitized animals did not respond. The sensitivity of the peptide cocktail as an antigen in a whole-blood gamma interferon assay was determined using naturally infected field reactor cattle, and the specificity was determined using blood from BCG-vaccinated and noninfected, nonvaccinated animals. The sensitivity of the assay in cattle with confirmed tuberculosis was found to be 77.9%, with a specificity of 100% in BCG-vaccinated or nonvaccinated animals. This compares favorably with the specificity of tuberculin when tested in noninfected or vaccinated animals. In summary, our results demonstrate that this peptide cocktail can discriminate between M. bovis infection and BCG vaccination with a high degree of sensitivity and specificity.
                Bookmark

                Author and article information

                Journal
                BMC Vet Res
                BMC Vet. Res
                BMC Veterinary Research
                BioMed Central
                1746-6148
                2012
                16 October 2012
                : 8
                : 191
                Affiliations
                [1 ]Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Edifici CReSA, 08193, Bellaterra, Catalonia, Spain
                [2 ]Department of Animal Health, NEIKER-Tecnalia, 48160, Derio, Bizkaia, Spain
                [3 ]TB Research Group, Animal Health and Veterinary Laboratories Agency (AHVLA)-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
                [4 ]CZ Veterinaria S.A., 36400, Porriño, Pontevedra, Spain
                [5 ]Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
                Article
                1746-6148-8-191
                10.1186/1746-6148-8-191
                3514378
                23072619
                c4100136-f320-4dff-93cf-1dd792ec6f96
                Copyright ©2012 Pérez de Val et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 May 2012
                : 10 October 2012
                Categories
                Research Article

                Veterinary medicine
                diagnostic,paratuberculosis,interferon gamma,vaccine,tuberculosis,goat
                Veterinary medicine
                diagnostic, paratuberculosis, interferon gamma, vaccine, tuberculosis, goat

                Comments

                Comment on this article