21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Towards bio-silicon interfaces: Formation of an ultra-thin self-hydrated artificial membrane composed of dipalmitoylphosphatidylcholine (DPPC) and chitosan deposited in high vacuum from the gas-phase

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Editorial

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electrospinning of chitosan dissolved in concentrated acetic acid solution.

            Chitosan nanofibers were electrospun from aqueous chitosan solution using concentrated acetic acid solution as a solvent. A uniform nanofibrous mat of average fiber diameter of 130 nm was obtained from the following optimum condition: 7% chitosan solution in aqueous 90% acetic acid solution was successfully electrospun in the electric field of 4 kV/cm. The aqueous acetic acid concentration higher than 30% was prerequisite for chitosan nanofiber formation, because more concentrated acetic acid in water progressively decreased surface tension of the chitosan solution and concomitantly increased charge density of jet without significant effect on solution viscosity. However, acetic acid solution more than 90% did not dissolve enough chitosan to make spinnable viscous concentration. Only chitosan of a molecular weight of 106,000 g/mol produced bead-free chitosan nanofibers, while low- or high-molecular-weight chitosans of 30,000 and 398,000 g/mol did not. Average fiber diameters and size distribution decreased with increasing electric field and more bead defects appeared at 5 kV/cm or more.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Chitosan in Plant Protection

              Chitin and chitosan are naturally-occurring compounds that have potential in agriculture with regard to controlling plant diseases. These molecules were shown to display toxicity and inhibit fungal growth and development. They were reported to be active against viruses, bacteria and other pests. Fragments from chitin and chitosan are known to have eliciting activities leading to a variety of defense responses in host plants in response to microbial infections, including the accumulation of phytoalexins, pathogen-related (PR) proteins and proteinase inhibitors, lignin synthesis, and callose formation. Based on these and other proprieties that help strengthen host plant defenses, interest has been growing in using them in agricultural systems to reduce the negative impact of diseases on yield and quality of crops. This review recapitulates the properties and uses of chitin, chitosan, and their derivatives, and will focus on their applications and mechanisms of action during plant-pathogen interactions.
                Bookmark

                Author and article information

                Journal
                The Journal of Chemical Physics
                The Journal of Chemical Physics
                AIP Publishing
                0021-9606
                1089-7690
                September 14 2014
                September 14 2014
                : 141
                : 10
                : 104201
                Article
                10.1063/1.4894224
                25217908
                c3ed11fa-a30d-45ac-a7c6-966267130c3d
                © 2014
                History

                Comments

                Comment on this article