12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      One-pot hydrothermal synthesis of CdS decorated CuS microflower-like structures for enhanced photocatalytic properties

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          CdS decorated CuS structures have been controllably synthesized through a one-pot hydrothermal method. The morphologies and compositions of the as-prepared samples could be concurrently well controlled by simply tuning the amount of CdCl 2 and thiourea. Using this strategy, the morphology of the products experienced from messy to flower-like morphologies with multiple porous densities, together with the phase evolution from pure CuS to the CdS/CuS composites. Serving as a photocatalyst, the samples synthesized with the addition of 1 mmol cadmium chloride and 3 mmol thiourea during synthetic process, showed the best photocatalytic activity, which could reach a maximum photocatalytic efficiency of 93% for methyl orange (MO) photodegradation after 150 min. The possible mechanism for the high photocatalytic efficiency of the sample was proposed by investigating the composition, surface area, structure, and morphology before and after photocatalytic reaction.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: not found
          • Article: not found

          Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis.

            The photocatalytic performance of the star photocatalyst g-C3N4 was restricted by the low efficiency because of the fast charge recombination. The present work developed a facile in situ method to construct g-C3N4/g-C3N4 metal-free isotype heterojunction with molecular composite precursors with the aim to greatly promote the charge separation. Considering the fact that g-C3N4 samples prepared from urea and thiourea separately have different band structure, the molecular composite precursors of urea and thiourea were treated simultaneously under the same thermal conditions, in situ creating a novel layered g-C3N4/g-C3N4 metal-free heterojunction (g-g CN heterojunction). This synthesis method is facile, economic, and environmentally benign using easily available earth-abundant green precursors. The confirmation of isotype g-g CN heterojunction was based on XRD, HRTEM, valence band XPS, ns-level PL, photocurrent, and EIS measurement. Upon visible-light irradiation, the photogenerated electrons transfer from g-C3N4 (thiourea) to g-C3N4 (urea) driven by the conduction band offset of 0.10 eV, whereas the photogenerated holes transfer from g-C3N4 (urea) to g-C3N4 (thiourea) driven by the valence band offset of 0.40 eV. The potential difference between the two g-C3N4 components in the heterojunction is the main driving force for efficient charge separation and transfer. For the removal of NO in air, the g-g CN heterojunction exhibited significantly enhanced visible light photocatalytic activity over g-C3N4 alone and physical mixture of g-C3N4 samples. The enhanced photocatalytic performance of g-g CN isotype heterojunction can be directly ascribed to efficient charge separation and transfer across the heterojunction interface as well as prolonged lifetime of charge carriers. This work demonstrated that rational design and construction of isotype heterojunction could open up a new avenue for the development of new efficient visible-light photocatalysts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Visible light photocatalytic H₂-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer.

              Visible light photocatalytic H(2) production through water splitting is of great importance for its potential application in converting solar energy into chemical energy. In this study, a novel visible-light-driven photocatalyst was designed based on photoinduced interfacial charge transfer (IFCT) through surface modification of ZnS porous nanosheets by CuS. CuS/ZnS porous nanosheet photocatalysts were prepared by a simple hydrothermal and cation exchange reaction between preformed ZnS(en)(0.5) nanosheets and Cu(NO(3))(2). Even without a Pt cocatalyst, the as-prepared CuS/ZnS porous nanosheets reach a high H(2)-production rate of 4147 μmol h(-1) g(-1) at CuS loading content of 2 mol % and an apparent quantum efficiency of 20% at 420 nm. This high visible light photocatalytic H(2)-production activity is due to the IFCT from the valence band of ZnS to CuS, which causes the reduction of partial CuS to Cu(2)S and thus enhances H(2)-production activity. This work not only shows a possibility for substituting low-cost CuS for noble metals in the photocatalytic H(2) production but also for the first time exhibits a facile method for enhancing H(2)-production activity by photoinduced IFCT.
                Bookmark

                Author and article information

                Contributors
                ss_huangjinzhao@ujn.edu.cn
                sps_xuxj@ujn.edu.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                20 June 2017
                20 June 2017
                2017
                : 7
                : 3877
                Affiliations
                GRID grid.454761.5, School of Physics and Technology, , University of Jinan, ; 336 Nanxin Zhuang West Road, Jinan, 250022 Shandong Province People’s Republic of China
                Author information
                http://orcid.org/0000-0002-1284-4978
                Article
                4270
                10.1038/s41598-017-04270-y
                5478623
                28634397
                c3c32ffc-4a67-4877-86f6-a6d669731a1d
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 24 March 2017
                : 10 May 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article