1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      From emerging modalities to advanced applications of hydrogel piezoelectrics based on chitosan, gelatin and related biological macromolecules: A review

      , ,
      International Journal of Biological Macromolecules
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: not found

          Piezoelectric nanogenerators based on zinc oxide nanowire arrays.

          We have converted nanoscale mechanical energy into electrical energy by means of piezoelectric zinc oxide nanowire (NW) arrays. The aligned NWs are deflected with a conductive atomic force microscope tip in contact mode. The coupling of piezoelectric and semiconducting properties in zinc oxide creates a strain field and charge separation across the NW as a result of its bending. The rectifying characteristic of the Schottky barrier formed between the metal tip and the NW leads to electrical current generation. The efficiency of the NW-based piezoelectric power generator is estimated to be 17 to 30%. This approach has the potential of converting mechanical, vibrational, and/or hydraulic energy into electricity for powering nanodevices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fiber/Fabric‐Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence

            Integration of advanced nanogenerator technology with conventional textile processes fosters the emergence of textile-based nanogenerators (NGs), which will inevitably promote the rapid development and widespread applications of next-generation wearable electronics and multifaceted artificial intelligence systems. NGs endow smart textiles with mechanical energy harvesting and multifunctional self-powered sensing capabilities, while textiles provide a versatile flexible design carrier and extensive wearable application platform for their development. However, due to the lack of an effective interactive platform and communication channel between researchers specializing in NGs and those good at textiles, it is rather difficult to achieve fiber/fabric-based NGs with both excellent electrical output properties and outstanding textile-related performances. To this end, a critical review is presented on the current state of the arts of wearable fiber/fabric-based piezoelectric nanogenerators and triboelectric nanogenerators with respect to basic classifications, material selections, fabrication techniques, structural designs, and working principles, as well as potential applications. Furthermore, the potential difficulties and tough challenges that can impede their large-scale commercial applications are summarized and discussed. It is hoped that this review will not only deepen the ties between smart textiles and wearable NGs, but also push forward further research and applications of future wearable fiber/fabric-based NGs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids

              The auditory system is the most efficient and straightforward communication strategy for connecting human beings and robots. Here, we designed a self-powered triboelectric auditory sensor (TAS) for constructing an electronic auditory system and an architecture for an external hearing aid in intelligent robotic applications. Based on newly developed triboelectric nanogenerator (TENG) technology, the TAS showed ultrahigh sensitivity (110 millivolts/decibel). A TAS with the broadband response from 100 to 5000 hertz was achieved by designing the annular or sectorial inner boundary architecture with systematic optimization. When incorporated with intelligent robotic devices, TAS demonstrated high-quality music recording and accurate voice recognition for realizing intelligent human-robot interaction. Furthermore, the tunable resonant frequency of TAS was achieved by adjusting the geometric design of inner boundary architecture, which could be used to amplify a specific sound wave naturally. On the basis of this unique property, we propose a hearing aid with the TENG technique, which can simplify the signal processing circuit and reduce the power consuming. This work expresses notable advantages of using TENG technology to build a new generation of auditory systems for meeting the challenges in social robotics.
                Bookmark

                Author and article information

                Journal
                International Journal of Biological Macromolecules
                International Journal of Biological Macromolecules
                Elsevier BV
                01418130
                March 2024
                March 2024
                : 262
                : 129691
                Article
                10.1016/j.ijbiomac.2024.129691
                38272406
                c3bf4cd2-e120-45bb-bb6c-72e07c00557d
                © 2024

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article