Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Brain Activation During Conceptual Processing of Action and Sound Verbs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Grounded cognition approaches to conceptual representations postulate a close link between conceptual knowledge and the sensorimotor brain systems. The present fMRI study tested, whether a feature-specific representation of concepts, as previously demonstrated for nouns, can also be found for action- and sound-related verbs. Participants were presented with action- and soundrelated verbs along with pseudoverbs while performing a lexical decision task. Sound-related verbs activated auditory areas in the temporal cortex, whereas action-related verbs activated brain regions in the superior frontal gyrus and the cerebellum, albeit only at a more liberal threshold. This differential brain activation during conceptual verb processing partially overlapped with or was adjacent to brain regions activated during the functional localizers probing sound perception or action execution. Activity in brain areas involved in the processing of action information was parametrically modulated by ratings of action relevance. Comparisons of action- and sound-related verbs with pseudoverbs revealed activation for both verb categories in auditory and motor areas. In contrast to proposals of strong grounded cognition approaches, our study did not demonstrate a considerable overlap of activations for action- and sound-related verbs and for the corresponding functional localizer tasks. However, in line with weaker variants of grounded cognition theories, the differential activation pattern for action- and sound-related verbs was near corresponding sensorimotor brain regions depending on conceptual feature relevance. Possibly, action-sound coupling resulted in a mutual activation of the motor and the auditory system for both action- and sound-related verbs, thereby reducing the effect sizes for the differential contrasts.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Grounded cognition.

          Grounded cognition rejects traditional views that cognition is computation on amodal symbols in a modular system, independent of the brain's modal systems for perception, action, and introspection. Instead, grounded cognition proposes that modal simulations, bodily states, and situated action underlie cognition. Accumulating behavioral and neural evidence supporting this view is reviewed from research on perception, memory, knowledge, language, thought, social cognition, and development. Theories of grounded cognition are also reviewed, as are origins of the area and common misperceptions of it. Theoretical, empirical, and methodological issues are raised whose future treatment is likely to affect the growth and impact of grounded cognition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Assignment of functional activations to probabilistic cytoarchitectonic areas revisited.

            Probabilistic cytoarchitectonic maps in standard reference space provide a powerful tool for the analysis of structure-function relationships in the human brain. While these microstructurally defined maps have already been successfully used in the analysis of somatosensory, motor or language functions, several conceptual issues in the analysis of structure-function relationships still demand further clarification. In this paper, we demonstrate the principle approaches for anatomical localisation of functional activations based on probabilistic cytoarchitectonic maps by exemplary analysis of an anterior parietal activation evoked by visual presentation of hand gestures. After consideration of the conceptual basis and implementation of volume or local maxima labelling, we comment on some potential interpretational difficulties, limitations and caveats that could be encountered. Extending and supplementing these methods, we then propose a supplementary approach for quantification of structure-function correspondences based on distribution analysis. This approach relates the cytoarchitectonic probabilities observed at a particular functionally defined location to the areal specific null distribution of probabilities across the whole brain (i.e., the full probability map). Importantly, this method avoids the need for a unique classification of voxels to a single cortical area and may increase the comparability between results obtained for different areas. Moreover, as distribution-based labelling quantifies the "central tendency" of an activation with respect to anatomical areas, it will, in combination with the established methods, allow an advanced characterisation of the anatomical substrates of functional activations. Finally, the advantages and disadvantages of the various methods are discussed, focussing on the question of which approach is most appropriate for a particular situation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Active perception: sensorimotor circuits as a cortical basis for language.

              Action and perception are functionally linked in the brain, but a hotly debated question is whether perception and comprehension of stimuli depend on motor circuits. Brain language mechanisms are ideal for addressing this question. Neuroimaging investigations have found specific motor activations when subjects understand speech sounds, word meanings and sentence structures. Moreover, studies involving transcranial magnetic stimulation and patients with lesions affecting inferior frontal regions of the brain have shown contributions of motor circuits to the comprehension of phonemes, semantic categories and grammar. These data show that language comprehension benefits from frontocentral action systems, indicating that action and perception circuits are interdependent.
                Bookmark

                Author and article information

                Journal
                Adv Cogn Psychol
                Adv Cogn Psychol
                acp
                Advances in Cognitive Psychology
                University of Economics and Human Sciences in Warsaw
                1895-1171
                20 December 2019
                2019
                : 15
                : 4
                : 236-255
                Affiliations
                Ulm University, Department of Psychiatry, Ulm, Germany 1
                Author notes
                Markus Kiefer, Ulm University, Department of Psychiatry, Section for Cognitive Electrophysiology, Leimgrubenweg 12, 89075 Ulm, Germany Email: markus.kiefer@ 123456uni-ulm.de
                Article
                10.5709/acp-0272-4
                7251527
                c3b8d35d-b86e-41d4-a76c-00a8696e36c4
                Copyright: © 2019 University of Economics and Human Sciences in Warsaw

                This is an open access article under the CC BY-NC-ND license ( https://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Cognitive Psychology

                Clinical Psychology & Psychiatry
                embodied cognition,grounded cognition theory,action-related concepts,sound-related concepts,language,functional magnetic ,resonance imaging

                Comments

                Comment on this article