33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association of plasma endotoxin, inflammatory cytokines and risk of colorectal adenomas

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Recent studies suggest that bacterial endotoxins may be associated with various chronic diseases, including colorectal adenomas and cancer. Given the evidence linking inflammation and colorectal cancer, we sought to determine if plasma endotoxin concentrations are associated with indicators of systemic or local inflammation and colorectal adenomas.

          Methods

          This cross-sectional study consisted of participants who underwent screening colonoscopies and included adenoma cases (n=138) and non-adenoma controls (n=324). Plasma concentrations of endotoxin were measured with Limulus Amebocyte Lysate (LAL) assay. We quantified concentrations of inflammatory cytokines, interleukin-4 (IL-4), IL-6, IL-8, IL-10, IL-12, tumor necrosis factor-alpha (TNF-α), and interferon-γ (IFN-γ) in plasma by ELISA and mRNA expression levels in rectal mucosal biopsies by quantitative RT-PCR. Interleukin-17 was evaluated only in the rectal mucosa.

          Results

          Compared to subjects with low plasma endotoxin concentrations, those with higher concentrations were more likely to have adenomas (OR 1.4, 95% CI 1.0-2.1). Among subjects with adenomas, those with villous histology were more likely to have higher endotoxin concentrations (5.4 vs. 4.1EU/mL, p=0.05) and lower plasma IFN-γ (0 vs. 1.64 pg/mL, p=0.02) compared to those with only tubular adenomas. Cases showed a trend of having higher plasma TNF-α levels than controls (p=0.06), but none of the other plasma or rectal mucosal cytokine levels differed between cases and controls. Elevated mucosal IL-12 levels were associated with having multiple adenomas (p=0.04). Higher concentrations of plasma endotoxin predicted increased plasma IL-12 levels (OR 1.5, 95% CI 1.0-2.2) and rectal mucosal IL-12 (OR 1.9, 95% CI 1.0-3.7) and IL-17 gene expression (OR 2.2, 95% CI 1.0-4.6).

          Conclusions

          These findings suggest that interactions between elevated plasma endotoxin concentrations and inflammatory cytokines may be relevant to the development of colorectal adenomas.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases.

          Commensal microflora (normal microflora, indigenous microbiota) consists of those micro-organisms, which are present on body surfaces covered by epithelial cells and are exposed to the external environment (gastrointestinal and respiratory tract, vagina, skin, etc.). The number of bacteria colonising mucosal and skin surfaces exceeds the number of cells forming human body. Commensal bacteria co-evolved with their hosts, however, under specific conditions they are able to overcome protective host responses and exert pathologic effects. Resident bacteria form complex ecosystems, whose diversity is enormous. The most abundant microflora is present in the distal parts of the gut; the majority of the intestinal bacteria are Gram-negative anaerobes. More than 50% of intestinal bacteria cannot be cultured by conventional microbiological techniques. Molecular biological methods help in analysing the structural and functional complexity of the microflora and in identifying its components. Resident microflora contains a number of components able to activate innate and adaptive immunity. Unlimited immune activation in response to signals from commensal bacteria could pose the risk of inflammation; immune responses to mucosal microbiota therefore require a precise regulatory control. The mucosal immune system has developed specialised regulatory, anti-inflammatory mechanisms for eliminating or tolerating non-dangerous, food and airborne antigens and commensal micro-organisms (oral, mucosal tolerance). However, at the same time the mucosal immune system must provide local defense mechanisms against environmental threats (e.g. invading pathogens). This important requirement is fulfilled by several mechanisms of mucosal immunity: strongly developed innate defense mechanisms ensuring appropriate function of the mucosal barrier, existence of unique types of lymphocytes and their products, transport of polymeric immunoglobulins through epithelial cells into secretions (sIgA) and migration and homing of cells originating from the mucosal organised tissues in mucosae and exocrine glands. The important role of commensal bacteria in development of optimally functioning mucosal immune system was demonstrated in germ-free animals (using gnotobiological techniques). Involvement of commensal microflora and its components with strong immunoactivating properties (e.g. LPS, peptidoglycans, superantigens, bacterial DNA, Hsp) in etiopathogenetic mechanism of various complex, multifactorial and multigenic diseases, including inflammatory bowel diseases, periodontal disease, rheumatoid arthritis, atherosclerosis, allergy, multiorgan failure, colon cancer has been recently suggested. Animal models of human diseases reared in defined gnotobiotic conditions are helping to elucidate the aetiology of these frequent disorders. An improved understanding of commensal bacteria-host interactions employing germ-free animal models with selective colonisation strategies combined with modern molecular techniques could bring new insights into the mechanisms of mucosal immunity and also into pathogenetic mechanisms of several infectious, inflammatory, autoimmune and neoplastic diseases. Regulation of microflora composition (e.g. by probiotics and prebiotics) offers the possibility to influence the development of mucosal and systemic immunity but it can play a role also in prevention and treatment of some diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia.

            Curcumin is derived from the spice tumeric and has antiinflammatory and antineoplastic effects in vitro and in animal models, including preventing aberrant crypt foci (ACF) and adenomas in murine models of colorectal carcinogenesis. Inhibiting the production of the procarcinogenic eicosanoids prostaglandin E₂ (PGE₂) and 5-hydroxyeicosatetraenoic acid (5-HETE) can suppress carcinogenesis in rodents. Curcumin reduces mucosal concentrations of PGE₂ (via inhibition of cyclooxygenases 1 and 2) and 5-HETE (via inhibition of 5-lipoxygenase) in rats. Although preclinical data support curcumin activity in many sites, the poor bioavailability reported for this agent supports its use in the colorectum. We assessed the effects of oral curcumin (2 g or 4 g per day for 30 days) on PGE₂ within ACF (primary endpoint), 5-HETE, ACF number, and proliferation in a nonrandomized, open-label clinical trial in 44 eligible smokers with eight or more ACF on screening colonoscopy. We assessed pre- and posttreatment concentrations of PGE₂ and 5-HETE by liquid chromatography tandem mass spectroscopy in ACF and normal-tissue biopsies; ACF number via rectal endoscopy; proliferation by Ki-67 immunohistochemistry; and curcumin concentrations by high-performance liquid chromatography in serum and rectal mucosal samples. Forty-one subjects completed the study. Neither dose of curcumin reduced PGE₂ or 5-HETE within ACF or normal mucosa or reduced Ki-67 in normal mucosa. A significant 40% reduction in ACF number occurred with the 4-g dose (P < 0.005), whereas ACF were not reduced in the 2-g group. The ACF reduction in the 4-g group was associated with a significant, five-fold increase in posttreatment plasma curcumin/conjugate levels (versus pretreatment; P = 0.009). Curcumin was well tolerated at both 2 g and 4 g. Our data suggest that curcumin can decrease ACF number, and this is potentially mediated by curcumin conjugates delivered systemically.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protumor vs antitumor functions of IL-17.

              Inflammation appears to be a necessity for both metastasis and elimination of tumor cells. IL-17, a proinflammatory cytokine produced by Th17 cells, contributes to both the processes by playing a dual role in the antitumor immunity. On one hand, IL-17 promotes an antitumor cytotoxic T cell response leading to tumor regression. On the other hand, by facilitating angiogenesis and egress of tumor cells from the primary focus, IL-17 promotes tumor growth. Thus, the therapeutic application that uses IL-17 needs to be refined by minimizing its protumor functions.
                Bookmark

                Author and article information

                Journal
                BMC Cancer
                BMC Cancer
                BMC Cancer
                BioMed Central
                1471-2407
                2013
                26 February 2013
                : 13
                : 91
                Affiliations
                [1 ]Center for Gastrointestinal Biology and Disease, University of North Carolina, 103 Mason Farm Road, 7340 Medical Biomolecular Research Building, CB # 7032, 27599-7032, Chapel Hill, NC, USA
                Article
                1471-2407-13-91
                10.1186/1471-2407-13-91
                3599094
                23442743
                c3b553b3-9c3c-4c15-aa2c-9cad0d87fea6
                Copyright ©2013 Kang et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 August 2012
                : 18 February 2013
                Categories
                Research Article

                Oncology & Radiotherapy
                endotoxin,inflammatory cytokines,colonic neoplasm,adenoma,limulus amebocyte lysate

                Comments

                Comment on this article