70
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Carthami flos: a review of its ethnopharmacology, pharmacology and clinical applications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ABSTRACTCarthami flos, the dried floret of Carthamus tinctorius L., Asteraceae (safflower), has been widely used in traditional Chinese medicine to treat a broad range of ailments, such as coronary heart disease, angina pectoris, gynecologic disease, stroke, and hypertension. However, although several studies on Carthami flos have been done consecutively, the results are usually scattered across various documents. This review aims to provide up-to-date information on the traditional uses, pharmacology, clinical applications, and toxicology of Carthami flos in China and thereby to provide a basis for further investigation of its use to treat dissimilar diseases. Various ethnomedical uses of Carthami flos have been documented in many ancient Chinese books. Crude extracts and isolated compounds from Carthami flos show a broad range of pharmacological properties, such as protective effects on brain tissue, on osteoblasts, and in myocardial ischemia, as well as anti-inflammatory, antithrombotic, antitumor, and antidiabetic activities. To date, safflower and safflor yellow injections have been used to treat coronary heart disease, chronic pulmonary heart disease, cerebrovascular diseases, orthopedic diseases, and diabetes mellitus. Regarding the toxicology of Carthami flos, among the side effects that have been observed are allergic reaction, spermatogenetic failure, fatty liver, and nephrotoxicity.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Neuroprotective Effect of Kaempferol Glycosides against Brain Injury and Neuroinflammation by Inhibiting the Activation of NF-κB and STAT3 in Transient Focal Stroke

          Background Ischemic brain injury is associated with neuroinflammatory response, which essentially involves glial activation and neutrophil infiltration. Transcription factors nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) contribute to ischemic neuroinflammatory processes and secondary brain injury by releasing proinflammatory mediators. Kaempferol-3-O-rutinoside (KRS) and kaempferol-3-O- glucoside (KGS) are primary flavonoids found in Carthamus tinctorius L. Recent studies demonstrated that KRS protected against ischemic brain injury. However, little is known about the underlying mechanisms. Flavonoids have been reported to have antiinflammatory properties. Herein, we explored the effects of KRS and KGS in a transient focal stroke model. Methodology/Principal Findings Rats were subjected to middle cerebral artery occlusion for 2 hours followed by 22 h reperfusion. An equimolar dose of KRS or KGS was administered i.v. at the beginning of reperfusion. The results showed that KRS or KGS significantly attenuated the neurological deficits, brain infarct volume, and neuron and axon injury, reflected by the upregulation of neuronal nuclear antigen-positive neurons and downregulation of amyloid precursor protein immunoreactivity in the ipsilateral ischemic hemisphere. Moreover, KRS and KGS inhibited the expression of OX-42, glial fibrillary acidic protein, phosphorylated STAT3 and NF-κB p65, and the nuclear content of NF-κB p65. Subsequently, these flavonoids inhibited the expression of tumor necrosis factor α, interleukin 1β, intercellular adhesion molecule 1, matrix metallopeptidase 9, inducible nitric oxide synthase, and myeloperoxidase. Conclusion/Significance Our findings suggest that postischemic treatment with KRS or KGS prevents ischemic brain injury and neuroinflammation by inhibition of STAT3 and NF-κB activation and has the therapeutic potential for the neuroinflammation-related diseases, such as ischemic stroke.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Towards a better understanding of medicinal uses of Carthamus tinctorius L. in traditional Chinese medicine: a phytochemical and pharmacological review.

            Carthamus tinctorius L. (Compositae), a widely used traditional Chinese medicine, was known as Hong hua (Chinese: ), safflower. Safflower with a wide spectrum of pharmacological effects has been used to treat dysmenorrhea, amenorrhea, postpartum abdominal pain and mass, trauma and pain of joints, etc. The present paper reviews the advancements in investigation of botany and ethnopharmacology, phytochemistry, pharmacology and toxicology of safflower. Finally, the possible tendency and perspective for future investigation of this plant are discussed, too.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phytochemistry, pharmacology and medicinal properties of Carthamus tinctorius L.

              Carthamus tinctorius L. is commonly known as Safflower. C. tinctorius extracts and oil are important in drug development with numerous pharmacological activities in the world. This plant is cultivated mainly for its seed, which is used as edible oil. For a long time C. tinctorius has been used in traditional medicines as a purgative, analgesic, antipyretic and an antidote to poisoning. It is a useful plant in painful menstrual problems, post-partum hemorrhage and osteoporosis. C. tinctorius has recently been shown to have antioxidant, analgesic, anti-inflammatory and antidiabetic activities. Carthamin, safflower yellow are the main constituents in the flower of C. tinctorius. Carthamidin, isocarthamidin, hydroxysafflor yellow A, safflor yellow A, safflamin C and luteolin are the main constituents which are reported from this plant. Caryophyllene, p-allyltoluene, 1-acetoxytetralin and heneicosane were identified as the major components for C. tinctorius flowers essential oil. Due to the easy collection of the plant and being widespread and also remarkable biological activities, this plant has become both food and medicine in many parts of the world. This review presents comprehensive analyzed information on the botanical, chemical and pharmacological aspects of C. tinctorius.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                rbfar
                Revista Brasileira de Farmacognosia
                Rev. bras. farmacogn.
                Sociedade Brasileira de Farmacognosia (Curitiba )
                1981-528X
                October 2015
                : 25
                : 5
                : 553-566
                Affiliations
                [1 ] Second Military Medical University PR China
                [2 ] Second Military Medical University PR China
                Article
                S0102-695X2015000500553
                10.1016/j.bjp.2015.06.001
                c3813f28-9d69-4660-8990-48a769e8820e

                http://creativecommons.org/licenses/by/4.0/

                History
                Product

                SciELO Brazil

                Self URI (journal page): http://www.scielo.br/scielo.php?script=sci_serial&pid=0102-695X&lng=en
                Categories
                PHARMACOLOGY & PHARMACY

                Pharmacology & Pharmaceutical medicine
                Carthami flos,Pharmacology,Clinical applications,Side effects

                Comments

                Comment on this article