10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Quantification and functional evaluation of CD40L production from the adenovirus vector ONCOS-401

      , ,
      Cancer Gene Therapy
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adaptive immunity involves activation of T cells via antigen presentation by antigen presenting cells (APCs) along with the action of co-stimulatory molecules and pattern recognition receptors. Cluster of differentiation 40 (CD40) is one such costimulatory molecule that is expressed on APCs that binds to CD40 ligand (CD40L) on T helper cells and activates a signaling cascade, subsequently resulting in a wide range of immune and inflammatory responses. Considering its important role in regulation of immune response, CD40/40 L has been used for developing antitumor vaccines. In this study, we developed methods for evaluating and quantifying the activity of CD40L expressed from an adenovirus vector ONCOS-401. Our results show that the ONCOS-401 vector produces functional CD40L, which can bind and activate a NF-κB-dependent signaling cascade, leading to secreted embryonic alkaline phosphatase reporter production in HEK293-BLUE cells. In addition, quantification of CD40L production using enzyme-linked immunosorbent assay and HEK-293 BLUE reporter cells showed reproducibly higher recovery of CD40L from ONCOS-401 than from the negative control vector or uninfected cells with consistent inter and intra-assay precision. Thus, a rapid and easy method for quantifying and assessing CD40L production and activity from adenovirus vectors would support the assessment of efficacy of the vector for gene therapy - this was the objective of our study.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          CD40 and CD154 in cell-mediated immunity.

          CD40-CD154-mediated contact-dependent signals between B and T cells are required for the generation of thymus dependent (TD) humoral immune responses. CD40-CD154 interactions are however also important in many other cell systems. CD40 is expressed by a large variety of cell types other than B cells, and these include dendritic cells, follicular dendritic cells, monocytes, macrophages, mast cells, fibroblasts, and endothelial cells. CD40- and CD154-knockout mice and antibodies to CD40 and CD154 have helped to elucidate the role of the CD40-CD154 system in immune responses. Recently published studies indicate that CD40-CD154 interactions can influence T cell priming and T cell-mediated effector functions; they can also upregulate costimulatory molecules and activate macrophages, NK cells, and endothelia as well as participate in organ-specific autoimmune disease, graft rejection, and even atherosclerosis. This review focuses on the role of the CD40-CD154 system in the regulation of many newly discovered functions important in inflammation and cell-mediated immunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1.

            Several members of the tumour-necrosis/nerve-growth factor (TNF/NGF) receptor family activate the transcription factor NF-kappaB through a common adaptor protein, Traf2 (refs 1-5), whereas the interleukin 1 type-I receptor activates NF-kappaB independently of Traf2 (ref. 4). We have now cloned a new protein kinase, NIK, which binds to Traf2 and stimulates NF-kappaB activity. This kinase shares sequence similarity with several MAPKK kinases. Expression in cells of kinase-deficient NIK mutants fails to stimulate NF-kappaB and blocks its induction by TNF, by either of the two TNF receptors or by the receptor CD95 (Fas/Apo-1), and by TRADD, RIP and MORT1/FADD, which are adaptor proteins that bind to these receptors. It also blocked NF-kappaB induction by interleukin-1. Our findings indicate that NIK participates in an NF-kappaB-inducing signalling cascade common to receptors of the TNF/NGF family and to the interleukin-1 type-I receptor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CD40/CD40L signaling and its implication in health and disease.

              CD40, a transmembrane receptor of the tumor necrosis factor gene superfamily is expressed on a variety of cells, such as monocytes, B-cells, antigen presenting cells, endothelial, smooth muscle cells, and fibroblasts. The interaction between CD40 and CD40 ligand (CD40L) enhances the expression of cytokines, chemokines, matrix metalloproteinases, growth factors, and adhesion molecules, mainly through the stimulation of nuclear factor kappa B. The aim of this review is to summarize the molecular and cellular characteristics of CD40 and CD40L, the mechanisms that regulate their expression, the cellular responses they stimulate and finally their implication in the pathophysiology of inflammatory and autoimmune diseases. (c) 2009 International Union of Biochemistry and Molecular Biology, Inc.
                Bookmark

                Author and article information

                Journal
                Cancer Gene Therapy
                Cancer Gene Ther
                Springer Nature
                0929-1903
                1476-5500
                July 30 2018
                Article
                10.1038/s41417-018-0038-x
                30057416
                c3645dbb-01da-4a66-8fdd-5c676e4bcaf8
                © 2018
                History

                Comments

                Comment on this article