2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nivolumab plus relatlimab in patients with previously treated microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II CheckMate 142 study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Programmed death-1 (PD-1) inhibitors, including nivolumab, have demonstrated long-term survival benefit in previously treated patients with microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer (CRC). PD-1 and lymphocyte-activation gene 3 (LAG-3) are distinct immune checkpoints that are often co-expressed on tumor-infiltrating lymphocytes and contribute to tumor-mediated T-cell dysfunction. Relatlimab is a LAG-3 inhibitor that has demonstrated efficacy in combination with nivolumab in patients with melanoma. Here, we present the results from patients with MSI-H/dMMR metastatic CRC treated with nivolumab plus relatlimab in the CheckMate 142 study.

          Methods

          In this open-label, phase II study, previously treated patients with MSI-H/dMMR metastatic CRC received nivolumab 240 mg plus relatlimab 160 mg intravenously every 2 weeks. The primary end point was investigator-assessed objective response rate (ORR).

          Results

          A total of 50 previously treated patients received nivolumab plus relatlimab. With median follow-up of 47.4 (range 43.9–49.2) months, investigator-assessed ORR was 50% (95% CI 36% to 65%) and disease control rate was 70% (95% CI 55% to 82%). The median time to response per investigator was 2.8 (range 1.3–33.1) months, and median duration of response was 42.7 (range 2.8–47.0+) months. The median progression-free survival per investigator was 27.5 (95% CI 5.3 to 43.7) months with a progression-free survival rate at 3 years of 38%, and median overall survival was not reached (95% CI 17.2 months to not estimable), with a 56% overall survival rate at 3 years. The most common any-grade treatment-related adverse events (TRAEs) were diarrhea (24%), asthenia (16%), and hypothyroidism (12%). Grade 3 or 4 TRAEs were reported in 14% of patients, and TRAEs of any grade leading to discontinuation were observed in 8% of patients. No treatment-related deaths were reported.

          Conclusions

          Nivolumab plus relatlimab provided durable clinical benefit and was well tolerated in previously treated patients with MSI-H/dMMR metastatic CRC.

          Trial registration number

          NCT02060188.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline

            Purpose To increase awareness, outline strategies, and offer guidance on the recommended management of immune-related adverse events in patients treated with immune checkpoint inhibitor (ICPi) therapy. Methods A multidisciplinary, multi-organizational panel of experts in medical oncology, dermatology, gastroenterology, rheumatology, pulmonology, endocrinology, urology, neurology, hematology, emergency medicine, nursing, trialist, and advocacy was convened to develop the clinical practice guideline. Guideline development involved a systematic review of the literature and an informal consensus process. The systematic review focused on guidelines, systematic reviews and meta-analyses, randomized controlled trials, and case series published from 2000 through 2017. Results The systematic review identified 204 eligible publications. Much of the evidence consisted of systematic reviews of observational data, consensus guidelines, case series, and case reports. Due to the paucity of high-quality evidence on management of immune-related adverse events, recommendations are based on expert consensus. Recommendations Recommendations for specific organ system-based toxicity diagnosis and management are presented. While management varies according to organ system affected, in general, ICPi therapy should be continued with close monitoring for grade 1 toxicities, with the exception of some neurologic, hematologic, and cardiac toxicities. ICPi therapy may be suspended for most grade 2 toxicities, with consideration of resuming when symptoms revert to grade 1 or less. Corticosteroids may be administered. Grade 3 toxicities generally warrant suspension of ICPis and the initiation of high-dose corticosteroids (prednisone 1 to 2 mg/kg/d or methylprednisolone 1 to 2 mg/kg/d). Corticosteroids should be tapered over the course of at least 4 to 6 weeks. Some refractory cases may require infliximab or other immunosuppressive therapy. In general, permanent discontinuation of ICPis is recommended with grade 4 toxicities, with the exception of endocrinopathies that have been controlled by hormone replacement. Additional information is available at www.asco.org/supportive-care-guidelines and www.asco.org/guidelineswiki .
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nivolumab in Previously Untreated Melanoma withoutBRAFMutation

              Nivolumab was associated with higher rates of objective response than chemotherapy in a phase 3 study involving patients with ipilimumab-refractory metastatic melanoma. The use of nivolumab in previously untreated patients with advanced melanoma has not been tested in a phase 3 controlled study. We randomly assigned 418 previously untreated patients who had metastatic melanoma without a BRAF mutation to receive nivolumab (at a dose of 3 mg per kilogram of body weight every 2 weeks and dacarbazine-matched placebo every 3 weeks) or dacarbazine (at a dose of 1000 mg per square meter of body-surface area every 3 weeks and nivolumab-matched placebo every 2 weeks). The primary end point was overall survival. At 1 year, the overall rate of survival was 72.9% (95% confidence interval [CI], 65.5 to 78.9) in the nivolumab group, as compared with 42.1% (95% CI, 33.0 to 50.9) in the dacarbazine group (hazard ratio for death, 0.42; 99.79% CI, 0.25 to 0.73; P<0.001). The median progression-free survival was 5.1 months in the nivolumab group versus 2.2 months in the dacarbazine group (hazard ratio for death or progression of disease, 0.43; 95% CI, 0.34 to 0.56; P<0.001). The objective response rate was 40.0% (95% CI, 33.3 to 47.0) in the nivolumab group versus 13.9% (95% CI, 9.5 to 19.4) in the dacarbazine group (odds ratio, 4.06; P<0.001). The survival benefit with nivolumab versus dacarbazine was observed across prespecified subgroups, including subgroups defined by status regarding the programmed death ligand 1 (PD-L1). Common adverse events associated with nivolumab included fatigue, pruritus, and nausea. Drug-related adverse events of grade 3 or 4 occurred in 11.7% of the patients treated with nivolumab and 17.6% of those treated with dacarbazine. Nivolumab was associated with significant improvements in overall survival and progression-free survival, as compared with dacarbazine, among previously untreated patients who had metastatic melanoma without a BRAF mutation. (Funded by Bristol-Myers Squibb; CheckMate 066 ClinicalTrials.gov number, NCT01721772.).
                Bookmark

                Author and article information

                Journal
                J Immunother Cancer
                J Immunother Cancer
                jitc
                jitc
                Journal for Immunotherapy of Cancer
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2051-1426
                2024
                31 May 2024
                : 12
                : 5
                : e008689
                Affiliations
                [1 ] departmentDepartment of Gastrointestinal Medical Oncology , Ringgold_4002University of Texas MD Anderson Cancer Center , Houston, Texas, USA
                [2 ] departmentDepartment of Oncology and Hematology , Ringgold_208968University Hospital Modena , Modena, Italy
                [3 ] departmentDepartment of Medical Oncology , Ringgold_18524Istituto di Candiolo, FPO IRCCS , Candiolo, Italy
                [4 ] departmentDepartment of Medical Oncology , Ringgold_200123Westmead Hospital The Crown Princess Mary Cancer Centre , Sydney, New South Wales, Australia
                [5 ] Ringgold_16885Hospital Universitario Virgen del Rocio , Sevilla, Andalucía, Spain
                [6 ] departmentMedical Oncology , University College Hospital , Galway, Ireland
                [7 ] departmentMedical Oncology Service , Ringgold_16483Hospital General Universitario Gregorio Marañón , Madrid, Spain
                [8 ] Tasman Oncology Research, Ltd , Southport, Queensland, Australia
                [9 ] Ringgold_221921Hospital Universitario HM Sanchinarro, Centro Integral Oncológico Clara Campal HM CIOCC , Madrid, Spain
                [10 ] departmentDepartment of Digestive Oncology , Ringgold_74883KU Leuven University Hospitals Leuven Gasthuisberg Campus , Leuven, Belgium
                [11 ] departmentDepartment of Medicine , Ringgold_23034Emory University Hospital , Atlanta, Georgia, USA
                [12 ] departmentDepartment of Translational Medicine , Ringgold_480678Bristol Myers Squibb Co , Princeton, New Jersey, USA
                [13 ] departmentGlobal Biostatistics and Data Science , Ringgold_480678Bristol Myers Squibb Co , Princeton, New Jersey, USA
                [14 ] departmentDepartment of Oncology , Veneto Institute of Oncology IOV-IRCSS , Padova, Italy
                Author notes
                [Correspondence to ] Dr Michael J Overman; moverman@ 123456mdanderson.org
                Author information
                http://orcid.org/0000-0001-5377-135X
                http://orcid.org/0000-0002-7593-8138
                Article
                jitc-2023-008689
                10.1136/jitc-2023-008689
                11149130
                38821718
                c35363a9-eae1-4026-9e5b-7c2f0ab57372
                © Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 26 April 2024
                Funding
                Funded by: Bristol Myers Squibb;
                Award ID: n/a
                Categories
                Clinical/Translational Cancer Immunotherapy
                1506
                2435
                Original research
                Custom metadata
                unlocked

                immune checkpoint inhibitor,colorectal cancer
                immune checkpoint inhibitor, colorectal cancer

                Comments

                Comment on this article