7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanism of action of a T cell-dependent bispecific antibody as a breakthrough immunotherapy against refractory colorectal cancer with an oncogenic mutation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          T cell-dependent bispecific antibody (TDB)-induced T cell activation, which can eliminate tumor cells independent of MHC engagement, is expected to be a novel breakthrough immunotherapy against refractory cancer. However, the mechanism of action of TDBs has not been fully elucidated thus far. We focused on TDB-induced T cell–tumor cell contact as an important initial step in direct T cell-mediated tumor cell killing via transport of cytotoxic cell proteases (e.g., granzymes) with or without immunological synapse formation. Using an anti-EGFR/CD3 TDB, hEx3, we visualized and quantified T cell–tumor cell contact and demonstrated a correlation between the degree of cell contact and TDB efficacy. We also found that cytokines, including interferon-gamma (IFNγ) and tumor necrosis factor-alpha (TNFα) secreted by activated T cells, damaged tumor cells in a cell contact-independent manner. Moreover, therapeutic experiences clearly indicated that hEx3, unlike conventional anti-EGFR antibodies, was effective against colorectal cancer (CRC) cells with mutant KRAS, BRAF, or PIK3CA. In a pharmacokinetic analysis, T cells spread gradually in accordance with the hEx3 distribution within tumor tissue. Accordingly, we propose that TDBs should have four action steps: 1st, passive targeting via size-dependent tumor accumulation; 2nd, active targeting via specific binding to tumor cells; 3rd, T cell redirection toward tumor cells; and 4th, TDB-induced cell contact-dependent (direct) or -independent (indirect) tumor cell killing. Finally, our TDB hEx3 may be a promising reagent against refractory CRC with an oncogenic mutation associated with a poor prognosis.

          Electronic supplementary material

          The online version of this article (10.1007/s00262-020-02667-9) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer statistics, 2018

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2014, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2015, were collected by the National Center for Health Statistics. In 2018, 1,735,350 new cancer cases and 609,640 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2005-2014) was stable in women and declined by approximately 2% annually in men, while the cancer death rate (2006-2015) declined by about 1.5% annually in both men and women. The combined cancer death rate dropped continuously from 1991 to 2015 by a total of 26%, translating to approximately 2,378,600 fewer cancer deaths than would have been expected if death rates had remained at their peak. Of the 10 leading causes of death, only cancer declined from 2014 to 2015. In 2015, the cancer death rate was 14% higher in non-Hispanic blacks (NHBs) than non-Hispanic whites (NHWs) overall (death rate ratio [DRR], 1.14; 95% confidence interval [95% CI], 1.13-1.15), but the racial disparity was much larger for individuals aged <65 years (DRR, 1.31; 95% CI, 1.29-1.32) compared with those aged ≥65 years (DRR, 1.07; 95% CI, 1.06-1.09) and varied substantially by state. For example, the cancer death rate was lower in NHBs than NHWs in Massachusetts for all ages and in New York for individuals aged ≥65 years, whereas for those aged <65 years, it was 3 times higher in NHBs in the District of Columbia (DRR, 2.89; 95% CI, 2.16-3.91) and about 50% higher in Wisconsin (DRR, 1.78; 95% CI, 1.56-2.02), Kansas (DRR, 1.51; 95% CI, 1.25-1.81), Louisiana (DRR, 1.49; 95% CI, 1.38-1.60), Illinois (DRR, 1.48; 95% CI, 1.39-1.57), and California (DRR, 1.45; 95% CI, 1.38-1.54). Larger racial inequalities in young and middle-aged adults probably partly reflect less access to high-quality health care. CA Cancer J Clin 2018;68:7-30. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs.

            We previously found that a polymer conjugated to the anticancer protein neocarzinostatin, named smancs, accumulated more in tumor tissues than did neocarzinostatin. To determine the general mechanism of this tumoritropic accumulation of smancs and other proteins, we used radioactive (51Cr-labeled) proteins of various molecular sizes (Mr 12,000 to 160,000) and other properties. In addition, we used dye-complexed serum albumin to visualize the accumulation in tumors of tumor-bearing mice. Many proteins progressively accumulated in the tumor tissues of these mice, and a ratio of the protein concentration in the tumor to that in the blood of 5 was obtained within 19 to 72 h. A large protein like immunoglobulin G required a longer time to reach this value of 5. The protein concentration ratio in the tumor to that in the blood of neither 1 nor 5 was achieved with neocarzinostatin, a representative of a small protein (Mr 12,000) in all time. We speculate that the tumoritropic accumulation of these proteins resulted because of the hypervasculature, an enhanced permeability to even macromolecules, and little recovery through either blood vessels or lymphatic vessels. This accumulation of macromolecules in the tumor was also found after i.v. injection of an albumin-dye complex (Mr 69,000), as well as after injection into normal and tumor tissues. The complex was retained only by tumor tissue for prolonged periods. There was little lymphatic recovery of macromolecules from tumor tissue. The present finding is of potential value in macromolecular tumor therapeutics and diagnosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CAR T cell immunotherapy for human cancer

              Adoptive T cell transfer (ACT) is a new area of transfusion medicine involving the infusion of lymphocytes to mediate antitumor, antiviral, or anti-inflammatory effects. The field has rapidly advanced from a promising form of immuno-oncology in preclinical models to the recent commercial approvals of chimeric antigen receptor (CAR) T cells to treat leukemia and lymphoma. This Review describes opportunities and challenges for entering mainstream oncology that presently face the CAR T field, with a focus on the challenges that have emerged over the past several years.
                Bookmark

                Author and article information

                Contributors
                mayasuna@east.ncc.go.jp
                Journal
                Cancer Immunol Immunother
                Cancer Immunol Immunother
                Cancer Immunology, Immunotherapy
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0340-7004
                1432-0851
                14 July 2020
                14 July 2020
                2021
                : 70
                : 1
                : 177-188
                Affiliations
                [1 ]GRID grid.272242.3, ISNI 0000 0001 2168 5385, Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, , National Cancer Center, ; 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577 Japan
                [2 ]GRID grid.26999.3d, ISNI 0000 0001 2151 536X, Department of Integrated Biosciences, Graduate School of Frontier Sciences, , The University of Tokyo, ; Chiba, 277-8562 Japan
                [3 ]GRID grid.136594.c, Department of Biotechnology and Life Science, Graduate School of Engineering, , Tokyo University of Agriculture and Technology, ; Tokyo, 184-8588 Japan
                [4 ]Research and Development Department, LPIXEL Inc., Tokyo, 100-0004 Japan
                Author information
                http://orcid.org/0000-0003-3356-0197
                Article
                2667
                10.1007/s00262-020-02667-9
                7838078
                32666260
                c34aabcf-21f1-4ee0-8abf-237407017387
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 8 March 2020
                : 8 July 2020
                Funding
                Funded by: National Cancer Center Research and Development Fund
                Award ID: 30-S-4 and 2020-S-2
                Award Recipient :
                Funded by: Japan Society for the Promotion of Science (JP)
                Award ID: 18H02702
                Award Recipient :
                Funded by: Project for Development of Innovative Research on Cancer Therapeutics
                Award ID: 18cm0106240
                Award ID: 18cm0106240
                Award Recipient :
                Funded by: Princess Takamatsu Cancer Research Fund (JP)
                Funded by: Japan Leukemia Research Fund
                Funded by: Kawano Masanori Memorial Public Interest Incorporated Foundation for Promotion of Pediatrics
                Categories
                Original Article
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2021

                Oncology & Radiotherapy
                antibody therapeutics,bispecific antibody (bsab),t cell-dependent bispecific antibody (tdb),immunological synapse,immunotherapy,colorectal cancer

                Comments

                Comment on this article