Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Use of reflected GNSS SNR data to retrieve either soil moisture or vegetation height from a wheat crop

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p><strong>Abstract.</strong> This work aims to estimate soil moisture and vegetation height from Global Navigation Satellite System (GNSS) Signal to Noise Ratio (SNR) data using direct and reflected signals by the land surface surrounding a ground-based antenna. Observations are collected from a rainfed wheat field in southwestern France. Surface soil moisture is retrieved based on SNR phases estimated by the Least Square Estimation method, assuming the relative antenna height is constant. It is found that vegetation growth breaks up the constant relative antenna height assumption. A vegetation-height retrieval algorithm is proposed using the SNR-dominant period (the peak period in the average power spectrum derived from a wavelet analysis of SNR). Soil moisture and vegetation height are retrieved at different time periods (before and after vegetation's significant growth in March). The retrievals are compared with two independent reference data sets: in situ observations of soil moisture and vegetation height, and numerical simulations of soil moisture, vegetation height and above-ground dry biomass from the ISBA (interactions between soil, biosphere and atmosphere) land surface model. Results show that changes in soil moisture mainly affect the multipath phase of the SNR data (assuming the relative antenna height is constant) with little change in the dominant period of the SNR data, whereas changes in vegetation height are more likely to modulate the SNR-dominant period. Surface volumetric soil moisture can be estimated (<i>R</i><sup>2</sup><span class="thinspace"></span> = <span class="thinspace"></span>0.74, RMSE<span class="thinspace"></span> = <span class="thinspace"></span>0.009<span class="thinspace"></span>m<sup>3</sup><span class="thinspace"></span>m<sup>−3</sup>) when the wheat is smaller than one wavelength (∼<span class="thinspace"></span>19<span class="thinspace"></span>cm). The quality of the estimates markedly decreases when the vegetation height increases. This is because the reflected GNSS signal is less affected by the soil. When vegetation replaces soil as the dominant reflecting surface, a wavelet analysis provides an accurate estimation of the wheat crop height (<i>R</i><sup>2</sup><span class="thinspace"></span> = <span class="thinspace"></span>0.98, RMSE<span class="thinspace"></span> = <span class="thinspace"></span>6.2<span class="thinspace"></span>cm). The latter correlates with modeled above-ground dry biomass of the wheat from stem elongation to ripening. It is found that the vegetation height retrievals are sensitive to changes in plant height of at least one wavelength. A simple smoothing of the retrieved plant height allows an excellent matching to in situ observations, and to modeled above-ground dry biomass.</p>

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          A Practical Guide to Wavelet Analysis

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              N uptake and distribution in crops: an agronomical and ecophysiological perspective.

              The rate of N uptake of crops is highly variable during crop development and between years and sites. However, under ample soil N availability, crop N accumulation is highly related to crop growth rate and to biomass accumulation. Critical N concentration has been defined as the minimum N concentration which allows maximum growth rate. Critical N concentration declines during crop growth. The relationship between critical N concentration and biomass accumulation over the growth period of a crop is broadly similar within major C(3) and C(4) cultivated species. Therefore, the critical N concentration concept is widely used in agronomy as the basis of the diagnosis of crop N status, and allows discrimination between situations of sub-optimal and supra-optimal N supply. The relationship between N and biomass accumulation in crops, relies on the interregulation of multiple crop physiological processes. Among these processes, N uptake, crop C assimilation and thus growth rate, and C and N allocation between organs and between plants, play a particular role. Under sub-optimal N supply, N uptake of the crop depends on soil mineral N availability and distribution, and on root distribution. Under ample N supply, N uptake largely depends on growth rate via internal plant regulation. Carbon assimilation of the crop is related to crop N through the distribution of N between mature leaves with consequences for leaf and canopy photosynthesis. However, although less commonly emphasized, carbon assimilation of the crop also depends on crop N through leaf area development. Therefore, crop growth rate fundamentally relies on the balance of N allocation between growing and mature leaves. Nitrogen uptake and distribution also depends on C allocation between organs and N composition of these organs. Within shoots, allocation of C to stems generally increases in relation to C allocation to the leaves over the crop growth period. Allocation of C and N between shoots and roots also changes to a large extent in relation to soil N and/or crop N. These alterations in C and N allocation between plant organs have implications, together with soil availability and carbon assimilation, on N uptake and distribution in crops. Therefore, N uptake and distribution in plants and crops involves many aspects of growth and development. Regulation of nitrogen assimilation needs to be considered in the context of these interregulatory processes.
                Bookmark

                Author and article information

                Journal
                Hydrology and Earth System Sciences
                Hydrol. Earth Syst. Sci.
                Copernicus GmbH
                1607-7938
                2017
                September 26 2017
                : 21
                : 9
                : 4767-4784
                Article
                10.5194/hess-21-4767-2017
                c32e30d6-19cc-4509-8c95-cf806bdedbe6
                © 2017

                https://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article