Breast cancer survivors have increased incidence of age-related diseases, suggesting that some survivors may experience faster biological aging.
Among 417 women enrolled in the prospective Sister Study cohort, DNA methylation data were generated on paired blood samples collected an average of 7.7 years apart and used to calculate 3 epigenetic metrics of biological aging (PhenoAgeAccel, GrimAgeAccel, and Dunedin Pace of Aging Calculated from the Epigenome [DunedinPACE]). Approximately half (n = 190) the women sampled were diagnosed and treated for breast cancer between blood draws, whereas the other half (n = 227) remained breast cancer–free. Breast tumor characteristics and treatment information were abstracted from medical records.
Among women who developed breast cancer, diagnoses occurred an average of 3.5 years after the initial blood draw and 4 years before the second draw. After accounting for covariates and biological aging metrics measured at baseline, women diagnosed and treated for breast cancer had higher biological aging at the second blood draw than women who remained cancer-free as measured by PhenoAgeAccel (standardized mean difference [β] = 0.13, 95% confidence interval [CI) = 0.00 to 0.26), GrimAgeAccel (β = 0.14, 95% CI = 0.03 to 0.25), and DunedinPACE (β = 0.37, 95% CI = 0.24 to 0.50). In case-only analyses assessing associations with different breast cancer therapies, radiation had strong positive associations with biological aging (PhenoAgeAccel: β = 0.39, 95% CI = 0.19 to 0.59; GrimAgeAccel: β = 0.29, 95% CI = 0.10 to 0.47; DunedinPACE: β = 0.25, 95% CI = 0.02 to 0.48).
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.