8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SEMA4D/VEGF surface enhances endothelialization by diminished-glycolysis-mediated M2-like macrophage polarization

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cardiovascular disease remains the leading cause of death and morbidity worldwide. Inflammatory responses after percutaneous coronary intervention led to neoathrosclerosis and in-stent restenosis and thus increase the risk of adverse clinical outcomes. In this work, a metabolism reshaped surface is engineered, which combines the decreased glycolysis promoting, M2-like macrophage polarization, and rapid endothelialization property. Anionic heparin plays as a linker and mediates cationic SEMA4D and VEGF to graft electronically onto PLL surfaces. The system composed by anticoagulant heparin, immunoregulatory SEMA4D and angiogenic VEGF endows the scaffold with significant inhibition of platelets, fibrinogen and anti-thrombogenic properties, also noteworthy immunometabolism reprogram, anti-inflammation M2-like polarization and finally leading to rapid endothelializaiton performances. Our research indicates that the immunometabolism method can accurately reflect the immune state of modified surfaces. It is envisioned immunometabolism study will open an avenue to the surface engineering of vascular implants for better clinical outcomes.

          Graphical abstract

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Exploring the full spectrum of macrophage activation.

          Macrophages display remarkable plasticity and can change their physiology in response to environmental cues. These changes can give rise to different populations of cells with distinct functions. In this Review we suggest a new grouping of macrophage populations based on three different homeostatic activities - host defence, wound healing and immune regulation. We propose that similarly to primary colours, these three basic macrophage populations can blend into various other 'shades' of activation. We characterize each population and provide examples of macrophages from specific disease states that have the characteristics of one or more of these populations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis.

            New blood vessel formation (angiogenesis) is a fundamental event in the process of tumor growth and metastatic dissemination. Hence, the molecular basis of tumor angiogenesis has been of keen interest in the field of cancer research. The vascular endothelial growth factor (VEGF) pathway is well established as one of the key regulators of this process. The VEGF/VEGF-receptor axis is composed of multiple ligands and receptors with overlapping and distinct ligand-receptor binding specificities, cell-type expression, and function. Activation of the VEGF-receptor pathway triggers a network of signaling processes that promote endothelial cell growth, migration, and survival from pre-existing vasculature. In addition, VEGF mediates vessel permeability, and has been associated with malignant effusions. More recently, an important role for VEGF has emerged in mobilization of endothelial progenitor cells from the bone marrow to distant sites of neovascularization. The well-established role of VEGF in promoting tumor angiogenesis and the pathogenesis of human cancers has led to the rational design and development of agents that selectively target this pathway. Studies with various anti-VEGF/VEGF-receptor therapies have shown that these agents can potently inhibit angiogenesis and tumor growth in preclinical models. Recently, an anti-VEGF antibody (bevacizumab), when used in combination with chemotherapy, was shown to significantly improve survival and response rates in patients with metastatic colorectal cancer and thus, validate VEGF pathway inhibitors as an important new treatment modality in cancer therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization.

              Macrophage polarization involves a coordinated metabolic and transcriptional rewiring that is only partially understood. By using an integrated high-throughput transcriptional-metabolic profiling and analysis pipeline, we characterized systemic changes during murine macrophage M1 and M2 polarization. M2 polarization was found to activate glutamine catabolism and UDP-GlcNAc-associated modules. Correspondingly, glutamine deprivation or inhibition of N-glycosylation decreased M2 polarization and production of chemokine CCL22. In M1 macrophages, we identified a metabolic break at Idh, the enzyme that converts isocitrate to alpha-ketoglutarate, providing mechanistic explanation for TCA cycle fragmentation. (13)C-tracer studies suggested the presence of an active variant of the aspartate-arginosuccinate shunt that compensated for this break. Consistently, inhibition of aspartate-aminotransferase, a key enzyme of the shunt, inhibited nitric oxide and interleukin-6 production in M1 macrophages, while promoting mitochondrial respiration. This systems approach provides a highly integrated picture of the physiological modules supporting macrophage polarization, identifying potential pharmacologic control points for both macrophage phenotypes.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mater Today Bio
                Mater Today Bio
                Materials Today Bio
                Elsevier
                2590-0064
                20 October 2023
                December 2023
                20 October 2023
                : 23
                : 100832
                Affiliations
                [a ]Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
                [b ]Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
                [c ]Department of Pharmacy, Longquanyi District of Chengdu Maternity & Child Health Care Hospital, Chengdu, 610072, China
                [d ]Department of Pharmacy, The People's Hospital of Leshan, Leshan, China
                [e ]School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 610072, China
                Author notes
                []Corresponding author. Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China. gzhao@ 123456uestc.edu.cn
                [1]

                These authors contribute equally.

                Article
                S2590-0064(23)00292-2 100832
                10.1016/j.mtbio.2023.100832
                10630656
                c2d2afb3-59dc-4b9e-8cd1-127bf5d2f722
                © 2023 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 27 June 2023
                : 20 September 2023
                : 12 October 2023
                Categories
                Full Length Article

                semaphorin 4d (sema4d),vascular endothelial growth factor (vegf),endothelialization,immunometabolism,m2-like macrophage phenotype

                Comments

                Comment on this article