6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development and Characterization of a Nanobody against Human T-Cell Immunoglobulin and Mucin-3

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Monoclonal antibodies and antibody-derived biologics are essential tools for cancer research and therapy. The development of monoclonal antibody treatments for successful tumor-targeted therapies took several decades. A nanobody constructed by molecular engineering of heavy-chain-only antibody, which is unique in camel or alpaca, is a burgeoning tools of diagnostic and therapeutic in clinic. In this study, we immunized a 4-year-old female alpaca with TIM-3 antigen. Then, a VHH phage was synthesized from the transcriptome of its B cells by nested PCR as an intermediate library; the library selection for Tim-3 antigen is carried out in three rounds of translation. The most reactive colonies were selected by periplasmic extract monoclonal ELISA. The nanobody was immobilized by metal affinity chromatography (IMAC) purification with the use of a Ni-NTA column, SDS-PAGE, and Western blotting. Finally, the affinity of TIM3-specific nanobody was determined by ELISA. As results, specific 15 kD bands representing nanomaterials were observed on the gel and confirmed by Western blotting. The nanobody showed obvious specific immune response to Tim-3 and had high binding affinity. We have successfully prepared a functional anti-human Tim-3 nanobody with high affinity in vitro.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          The blockade of immune checkpoints in cancer immunotherapy.

          Among the most promising approaches to activating therapeutic antitumour immunity is the blockade of immune checkpoints. Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. It is now clear that tumours co-opt certain immune-checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Because many of the immune checkpoints are initiated by ligand-receptor interactions, they can be readily blocked by antibodies or modulated by recombinant forms of ligands or receptors. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) antibodies were the first of this class of immunotherapeutics to achieve US Food and Drug Administration (FDA) approval. Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease.

            Activation of naive CD4(+) T-helper cells results in the development of at least two distinct effector populations, Th1 and Th2 cells. Th1 cells produce cytokines (interferon (IFN)-gamma, interleukin (IL)-2, tumour-necrosis factor (TNF)-alpha and lymphotoxin) that are commonly associated with cell-mediated immune responses against intracellular pathogens, delayed-type hypersensitivity reactions, and induction of organ-specific autoimmune diseases. Th2 cells produce cytokines (IL-4, IL-10 and IL-13) that are crucial for control of extracellular helminthic infections and promote atopic and allergic diseases. Although much is known about the functions of these two subsets of T-helper cells, there are few known surface molecules that distinguish between them. We report here the identification and characterization of a transmembrane protein, Tim-3, which contains an immunoglobulin and a mucin-like domain and is expressed on differentiated Th1 cells. In vivo administration of antibody to Tim-3 enhances the clinical and pathological severity of experimental autoimmune encephalomyelitis (EAE), a Th1-dependent autoimmune disease, and increases the number and activation level of macrophages. Tim-3 may have an important role in the induction of autoimmune diseases by regulating macrophage activation and/or function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity

              The immune response plays an important role in staving off cancer; however, mechanisms of immunosuppression hinder productive anti-tumor immunity. T cell dysfunction or exhaustion in tumor-bearing hosts is one such mechanism. PD-1 has been identified as a marker of exhausted T cells in chronic disease states, and blockade of PD-1–PD-1L interactions has been shown to partially restore T cell function. We have found that T cell immunoglobulin mucin (Tim) 3 is expressed on CD8+ tumor-infiltrating lymphocytes (TILs) in mice bearing solid tumors. All Tim-3+ TILs coexpress PD-1, and Tim-3+PD-1+ TILs represent the predominant fraction of T cells infiltrating tumors. Tim-3+PD-1+ TILs exhibit the most severe exhausted phenotype as defined by failure to proliferate and produce IL-2, TNF, and IFN-γ. We further find that combined targeting of the Tim-3 and PD-1 pathways is more effective in controlling tumor growth than targeting either pathway alone.
                Bookmark

                Author and article information

                Contributors
                Journal
                Comput Math Methods Med
                Comput Math Methods Med
                cmmm
                Computational and Mathematical Methods in Medicine
                Hindawi
                1748-670X
                1748-6718
                2022
                11 June 2022
                : 2022
                : 2929605
                Affiliations
                1Department of Urology, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an City, 710032 Shaanxi Province, China
                2No. 986 Hospital, Air Force Military Medical University, Xi'an City, 710054 Shaanxi Province, China
                3Department of Biochemistry and Molecular Biology, Basic Medical College, Air Force Military Medical University, Xi'an City, 710032 Shaanxi Province, China
                4The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an 710049, China
                Author notes

                Academic Editor: Min Tang

                Author information
                https://orcid.org/0000-0001-5748-0154
                https://orcid.org/0000-0002-3339-5331
                Article
                10.1155/2022/2929605
                9206550
                35726228
                c2b26672-5c4e-4b45-84dc-97b9a7ada9a8
                Copyright © 2022 Mingyuan Xia et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 March 2022
                : 7 April 2022
                : 19 April 2022
                Funding
                Funded by: Foundation of the Central Academy of Medical Sciences
                Award ID: 2021-JKCS-008
                Funded by: Natural Science Basic Research Project of Shaanxi Province
                Award ID: 2021JM-007
                Funded by: National Science and Technology Gold Surface Project
                Award ID: 81772745
                Categories
                Research Article

                Applied mathematics
                Applied mathematics

                Comments

                Comment on this article