2
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Practical recommendations for gynecologic surgery during the COVID‐19 pandemic

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Surgery in suspected/confirmed COVID‐19 patients is a high‐risk venture. In infected patients, COVID‐19 is present in the body cavity. During surgery it could be nebulized in the spray generated by surgical instruments and could theoretically infect members of the surgical team. Nevertheless, some surgical gynecologic pathologies cannot be postponed. We present a list of the most frequent gynecologic diseases and recommendations on their surgical management during the COVID‐19 pandemic, based on expert opinion, current available information, and international scientific society recommendations to support the work of gynecologists worldwide. In brief, any kind of surgical treatment should be scrutinized and postponed if possible. Nonoperative conservative treatment including pharmacological therapies for hormone‐sensitive pathologies should be implemented. Health risk assessment by patient history and COVID‐19 test before elective surgery are pivotal to protect both patients and healthcare providers. In confirmed COVID‐19 patients or highly suspected cases, elective surgery should be postponed until full recovery.

          Abstract

          The COVID‐19 pandemic required crucial reorganization of health services according to priorities. Recommendations for gynecologic surgery are presented.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study

          Summary Background In December, 2019, a pneumonia associated with the 2019 novel coronavirus (2019-nCoV) emerged in Wuhan, China. We aimed to further clarify the epidemiological and clinical characteristics of 2019-nCoV pneumonia. Methods In this retrospective, single-centre study, we included all confirmed cases of 2019-nCoV in Wuhan Jinyintan Hospital from Jan 1 to Jan 20, 2020. Cases were confirmed by real-time RT-PCR and were analysed for epidemiological, demographic, clinical, and radiological features and laboratory data. Outcomes were followed up until Jan 25, 2020. Findings Of the 99 patients with 2019-nCoV pneumonia, 49 (49%) had a history of exposure to the Huanan seafood market. The average age of the patients was 55·5 years (SD 13·1), including 67 men and 32 women. 2019-nCoV was detected in all patients by real-time RT-PCR. 50 (51%) patients had chronic diseases. Patients had clinical manifestations of fever (82 [83%] patients), cough (81 [82%] patients), shortness of breath (31 [31%] patients), muscle ache (11 [11%] patients), confusion (nine [9%] patients), headache (eight [8%] patients), sore throat (five [5%] patients), rhinorrhoea (four [4%] patients), chest pain (two [2%] patients), diarrhoea (two [2%] patients), and nausea and vomiting (one [1%] patient). According to imaging examination, 74 (75%) patients showed bilateral pneumonia, 14 (14%) patients showed multiple mottling and ground-glass opacity, and one (1%) patient had pneumothorax. 17 (17%) patients developed acute respiratory distress syndrome and, among them, 11 (11%) patients worsened in a short period of time and died of multiple organ failure. Interpretation The 2019-nCoV infection was of clustering onset, is more likely to affect older males with comorbidities, and can result in severe and even fatal respiratory diseases such as acute respiratory distress syndrome. In general, characteristics of patients who died were in line with the MuLBSTA score, an early warning model for predicting mortality in viral pneumonia. Further investigation is needed to explore the applicability of the MuLBSTA score in predicting the risk of mortality in 2019-nCoV infection. Funding National Key R&D Program of China.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1

            To the Editor: A novel human coronavirus that is now named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (formerly called HCoV-19) emerged in Wuhan, China, in late 2019 and is now causing a pandemic. 1 We analyzed the aerosol and surface stability of SARS-CoV-2 and compared it with SARS-CoV-1, the most closely related human coronavirus. 2 We evaluated the stability of SARS-CoV-2 and SARS-CoV-1 in aerosols and on various surfaces and estimated their decay rates using a Bayesian regression model (see the Methods section in the Supplementary Appendix, available with the full text of this letter at NEJM.org). SARS-CoV-2 nCoV-WA1-2020 (MN985325.1) and SARS-CoV-1 Tor2 (AY274119.3) were the strains used. Aerosols (<5 μm) containing SARS-CoV-2 (105.25 50% tissue-culture infectious dose [TCID50] per milliliter) or SARS-CoV-1 (106.75-7.00 TCID50 per milliliter) were generated with the use of a three-jet Collison nebulizer and fed into a Goldberg drum to create an aerosolized environment. The inoculum resulted in cycle-threshold values between 20 and 22, similar to those observed in samples obtained from the upper and lower respiratory tract in humans. Our data consisted of 10 experimental conditions involving two viruses (SARS-CoV-2 and SARS-CoV-1) in five environmental conditions (aerosols, plastic, stainless steel, copper, and cardboard). All experimental measurements are reported as means across three replicates. SARS-CoV-2 remained viable in aerosols throughout the duration of our experiment (3 hours), with a reduction in infectious titer from 103.5 to 102.7 TCID50 per liter of air. This reduction was similar to that observed with SARS-CoV-1, from 104.3 to 103.5 TCID50 per milliliter (Figure 1A). SARS-CoV-2 was more stable on plastic and stainless steel than on copper and cardboard, and viable virus was detected up to 72 hours after application to these surfaces (Figure 1A), although the virus titer was greatly reduced (from 103.7 to 100.6 TCID50 per milliliter of medium after 72 hours on plastic and from 103.7 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). The stability kinetics of SARS-CoV-1 were similar (from 103.4 to 100.7 TCID50 per milliliter after 72 hours on plastic and from 103.6 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). On copper, no viable SARS-CoV-2 was measured after 4 hours and no viable SARS-CoV-1 was measured after 8 hours. On cardboard, no viable SARS-CoV-2 was measured after 24 hours and no viable SARS-CoV-1 was measured after 8 hours (Figure 1A). Both viruses had an exponential decay in virus titer across all experimental conditions, as indicated by a linear decrease in the log10TCID50 per liter of air or milliliter of medium over time (Figure 1B). The half-lives of SARS-CoV-2 and SARS-CoV-1 were similar in aerosols, with median estimates of approximately 1.1 to 1.2 hours and 95% credible intervals of 0.64 to 2.64 for SARS-CoV-2 and 0.78 to 2.43 for SARS-CoV-1 (Figure 1C, and Table S1 in the Supplementary Appendix). The half-lives of the two viruses were also similar on copper. On cardboard, the half-life of SARS-CoV-2 was longer than that of SARS-CoV-1. The longest viability of both viruses was on stainless steel and plastic; the estimated median half-life of SARS-CoV-2 was approximately 5.6 hours on stainless steel and 6.8 hours on plastic (Figure 1C). Estimated differences in the half-lives of the two viruses were small except for those on cardboard (Figure 1C). Individual replicate data were noticeably “noisier” (i.e., there was more variation in the experiment, resulting in a larger standard error) for cardboard than for other surfaces (Fig. S1 through S5), so we advise caution in interpreting this result. We found that the stability of SARS-CoV-2 was similar to that of SARS-CoV-1 under the experimental circumstances tested. This indicates that differences in the epidemiologic characteristics of these viruses probably arise from other factors, including high viral loads in the upper respiratory tract and the potential for persons infected with SARS-CoV-2 to shed and transmit the virus while asymptomatic. 3,4 Our results indicate that aerosol and fomite transmission of SARS-CoV-2 is plausible, since the virus can remain viable and infectious in aerosols for hours and on surfaces up to days (depending on the inoculum shed). These findings echo those with SARS-CoV-1, in which these forms of transmission were associated with nosocomial spread and super-spreading events, 5 and they provide information for pandemic mitigation efforts.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Minimally Invasive versus Abdominal Radical Hysterectomy for Cervical Cancer

                Bookmark

                Author and article information

                Contributors
                valentina.bruno@ifo.gov.it
                Journal
                Int J Gynaecol Obstet
                Int J Gynaecol Obstet
                10.1002/(ISSN)1879-3479
                IJGO
                International Journal of Gynaecology and Obstetrics
                John Wiley and Sons Inc. (Hoboken )
                0020-7292
                1879-3479
                16 June 2020
                August 2020
                16 June 2020
                : 150
                : 2 ( doiID: 10.1002/ijgo.v150.2 )
                : 146-150
                Affiliations
                [ 1 ] Gynecologic Oncology Unit Department of Experimental Clinical Oncology IRCCS‐Regina Elena National Cancer Institute Rome Italy
                Author notes
                [*] [* ] Correspondence

                Valentina Bruno, Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS – Regina Elena, National Cancer Institute, Rome, Italy.

                Email: valentina.bruno@ 123456ifo.gov.it

                Article
                IJGO13248
                10.1002/ijgo.13248
                9087771
                32471012
                c2abf791-37b1-4838-8c3c-cb6ba2bd0694
                © 2020 International Federation of Gynecology and Obstetrics

                This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.

                History
                : 13 May 2020
                : 06 May 2020
                : 25 May 2020
                Page count
                Figures: 1, Tables: 1, Pages: 5, Words: 3375
                Categories
                Review Article
                Review Article
                Gynecology
                Custom metadata
                2.0
                August 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.1.5 mode:remove_FC converted:10.05.2022

                Obstetrics & Gynecology
                cervical cancer,coronavirus,covid‐19,endometrial cancer,endometriosis,gynecology,laparoscopy,myoma,ovarian cancer,surgery,urogynecology,vulvar cancer

                Comments

                Comment on this article