5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Restoration of foveal photoreceptors after intravitreal ranibizumab injections for diabetic macular edema

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anti-vascular endothelial growth factor drugs are the first-line treatment for diabetic macular edema (DME), although the mechanism of the visual acuity (VA) improvement remains largely unknown. The association between photoreceptor damage and visual impairment encouraged us to retrospectively investigate the changes in the foveal photoreceptors in the external limiting membrane (ELM) and ellipsoid zone (EZ) on spectral-domain optical coherence tomography (SD-OCT) images in 62 eyes with DME treated with intravitreal ranibizumab (IVR) injections. The transverse lengths of the disrupted EZ and ELM were shortened significantly ( P < 0.001 and P = 0.044, respectively) at 12 months. The qualitative investigation also showed restoration of the EZ and ELM lines on SD-OCT images. The EZ at 12 months lengthened in 34 of 38 eyes with discontinuous EZ and was preserved in 16 of 21 eyes with complete EZ at baseline. VA improvement was positively correlated with shortening of the disrupted EZ at 12 months ( ρ = 0.463, P < 0.001), whereas the decrease in central subfield thickness was associated with neither VA improvement nor changes in EZ status ( ρ = 0.215, P = 0.093 and ( ρ = 0.209, P = 0.103, respectively). These data suggested that photoreceptor restoration contributes to VA improvement after pro re nata treatment with IVR injections for DME independent of resolved retinal thickening.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Autocrine VEGF signaling is required for vascular homeostasis.

          Vascular endothelial growth factor (VEGF) is essential for developmental and pathological angiogenesis. Here we show that in the absence of any pathological insult, autocrine VEGF is required for the homeostasis of blood vessels in the adult. Genetic deletion of vegf specifically in the endothelial lineage leads to progressive endothelial degeneration and sudden death in 55% of mutant mice by 25 weeks of age. The phenotype is manifested without detectable changes in the total levels of VEGF mRNA or protein, indicating that paracrine VEGF could not compensate for the absence of endothelial VEGF. Furthermore, wild-type, but not VEGF null, endothelial cells showed phosphorylation of VEGFR2 in the absence of exogenous VEGF. Activation of the receptor in wild-type cells was suppressed by small molecule antagonists but not by extracellular blockade of VEGF. These results reveal a cell-autonomous VEGF signaling pathway that holds significance for vascular homeostasis but is dispensable for the angiogenic cascade.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synaptic activity and the construction of cortical circuits.

            Vision is critical for the functional and structural maturation of connections in the mammalian visual system. Visual experience, however, is a subset of a more general requirement for neural activity in transforming immature circuits into the organized connections that subserve adult brain function. Early in development, internally generated spontaneous activity sculpts circuits on the basis of the brain's "best guess" at the initial configuration of connections necessary for function and survival. With maturation of the sense organs, the developing brain relies less on spontaneous activity and increasingly on sensory experience. The sequential combination of spontaneously generated and experience-dependent neural activity endows the brain with an ongoing ability to accommodate to dynamically changing inputs during development and throughout life.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy.

              The vitreous levels of the angiogenic polypeptide vascular endothelial growth factor (also known as vascular permeability factor) were measured and compared in eyes with and without proliferative diabetic retinopathy. Undiluted vitreous samples from 20 eyes were collected at the time of vitrectomy, and vascular endothelial growth factor levels were determined by using a time-resolved immunofluorometric assay. Vitreous vascular endothelial growth factor levels were significantly higher in eyes with proliferative diabetic retinopathy than in eyes without proliferative diabetic retinopathy (P = .006; Wilcoxon Rank Sum Test). The median vitreous concentration in the eyes with proliferative diabetic retinopathy was 29.1 pM and exceeded the known concentration required for the maximal proliferation of vascular endothelial cells in vitro. These data are consistent with vascular endothelial growth factor serving as a physiologically relevant angiogenic factor in proliferative diabetic retinopathy.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                14 December 2016
                2016
                : 6
                : 39161
                Affiliations
                [1 ]Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine , Kyoto, Japan
                Author notes
                Article
                srep39161
                10.1038/srep39161
                5155247
                27966644
                c29b7705-d5be-4d79-be37-d754d2f06af3
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 21 September 2016
                : 17 November 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article