12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      FOXM1 drives proximal tubule proliferation during repair from acute ischemic kidney injury

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The proximal tubule has a remarkable capacity for repair after acute injury, but the cellular lineage and molecular mechanisms underlying this repair response are incompletely understood. Here, we developed a Kim1 -GFPCreER t2 knockin mouse line ( Kim1 -GCE) in order to perform genetic lineage tracing of dedifferentiated cells while measuring the cellular transcriptome of proximal tubule during repair. Acutely injured genetically labeled clones coexpressed KIM1, VIMENTIN, SOX9, and KI67, indicating a dedifferentiated and proliferative state. Clonal analysis revealed clonal expansion of Kim1 + cells, indicating that acutely injured, dedifferentiated proximal tubule cells, rather than fixed tubular progenitor cells, account for repair. Translational profiling during injury and repair revealed signatures of both successful and unsuccessful maladaptive repair. The transcription factor Foxm1 was induced early in injury, was required for epithelial proliferation in vitro, and was dependent on epidermal growth factor receptor (EGFR) stimulation. In conclusion, dedifferentiated proximal tubule cells effect proximal tubule repair, and we reveal an EGFR/FOXM1-dependent signaling pathway that drives proliferative repair after injury.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          A translational profiling approach for the molecular characterization of CNS cell types.

          The cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations. Using bacterial artificial chromosome (BAC) transgenic mice that express EGFP-tagged ribosomal protein L10a in defined cell populations, we have developed a methodology for affinity purification of polysomal mRNAs from genetically defined cell populations in the brain. The utility of this approach is illustrated by the comparative analysis of four types of neurons, revealing hundreds of genes that distinguish these four cell populations. We find that even two morphologically indistinguishable, intermixed subclasses of medium spiny neurons display vastly different translational profiles and present examples of the physiological significance of such differences. This genetically targeted translating ribosome affinity purification (TRAP) methodology is a generalizable method useful for the identification of molecular changes in any genetically defined cell type in response to genetic alterations, disease, or pharmacological perturbations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury.

            We report the identification of rat and human cDNAs for a type 1 membrane protein that contains a novel six-cysteine immunoglobulin-like domain and a mucin domain; it is named kidney injury molecule-1 (KIM-1). Structurally, KIM-1 is a member of the immunoglobulin gene superfamily most reminiscent of mucosal addressin cell adhesion molecule 1 (MAdCAM-1). Human KIM-1 exhibits homology to a monkey gene, hepatitis A virus cell receptor 1 (HAVcr-1), which was identified recently as a receptor for the hepatitis A virus. KIM-1 mRNA and protein are expressed at a low level in normal kidney but are increased dramatically in postischemic kidney. In situ hybridization and immunohistochemistry revealed that KIM-1 is expressed in proliferating bromodeoxyuridine-positive and dedifferentiated vimentin-positive epithelial cells in regenerating proximal tubules. Structure and expression data suggest that KIM-1 is an epithelial cell adhesion molecule up-regulated in the cells, which are dedifferentiated and undergoing replication. KIM-1 may play an important role in the restoration of the morphological integrity and function to postischemic kidney.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FoxM1 is required for execution of the mitotic programme and chromosome stability.

              Transcriptional induction of cell-cycle regulatory proteins ensures proper timing of subsequent cell-cycle events. Here we show that the Forkhead transcription factor FoxM1 regulates expression of many G2-specific genes and is essential for chromosome stability. Loss of FoxM1 leads to pleiotropic cell-cycle defects, including a delay in G2, chromosome mis-segregation and frequent failure of cytokinesis. We show that transcriptional activation of cyclin B by FoxM1 is essential for timely mitotic entry, whereas CENP-F, another direct target of FoxM1 identified here, is essential for precise functioning of the mitotic spindle checkpoint. Thus, our data uncover a transcriptional cluster regulated by FoxM1 that is essential for proper mitotic progression.
                Bookmark

                Author and article information

                Journal
                Journal of Clinical Investigation
                American Society for Clinical Investigation
                0021-9738
                1558-8238
                November 11 2019
                November 11 2019
                November 11 2019
                November 11 2019
                Article
                10.1172/JCI125519
                6877314
                31710314
                c28161d9-1c28-404a-b542-740f8bbbeff8
                © 2019
                History

                Comments

                Comment on this article