126
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The PROSITE database

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The PROSITE database consists of a large collection of biologically meaningful signatures that are described as patterns or profiles. Each signature is linked to a documentation that provides useful biological information on the protein family, domain or functional site identified by the signature. The PROSITE database is now complemented by a series of rules that can give more precise information about specific residues. During the last 2 years, the documentation and the ScanProsite web pages were redesigned to add more functionalities. The latest version of PROSITE (release 19.11 of September 27, 2005) contains 1329 patterns and 552 profile entries. Over the past 2 years more than 200 domains have been added, and now 52% of UniProtKB/Swiss-Prot entries (release 48.1 of September 27, 2005) have a cross-reference to a PROSITE entry. The database is accessible at http://www.expasy.org/prosite/.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          PROSITE: a documented database using patterns and profiles as motif descriptors.

          Among the various databases dedicated to the identification of protein families and domains, PROSITE is the first one created and has continuously evolved since. PROSITE currently consists of a large collection of biologically meaningful motifs that are described as patterns or profiles, and linked to documentation briefly describing the protein family or domain they are designed to detect. The close relationship of PROSITE with the SWISS-PROT protein database allows the evaluation of the sensitivity and specificity of the PROSITE motifs and their periodic reviewing. In return, PROSITE is used to help annotate SWISS-PROT entries. The main characteristics and the techniques of family and domain identification used by PROSITE are reviewed in this paper.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Automated annotation of microbial proteomes in SWISS-PROT.

            Large-scale sequencing of prokaryotic genomes demands the automation of certain annotation tasks currently manually performed in the production of the SWISS-PROT protein knowledgebase. The HAMAP project, or 'High-quality Automated and Manual Annotation of microbial Proteomes', aims to integrate manual and automatic annotation methods in order to enhance the speed of the curation process while preserving the quality of the database annotation. Automatic annotation is only applied to entries that belong to manually defined orthologous families and to entries with no identifiable similarities (ORFans). Many checks are enforced in order to prevent the propagation of wrong annotation and to spot problematic cases, which are channelled to manual curation. The results of this annotation are integrated in SWISS-PROT, and a website is provided at http://www.expasy.org/sprot/hamap/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ProRule: a new database containing functional and structural information on PROSITE profiles.

              Increase the discriminatory power of PROSITE profiles to facilitate function determination and provide biologically relevant information about domains detected by profiles for the annotation of proteins. We have created a new database, ProRule, which contains additional information about PROSITE profiles. ProRule contains notably the position of structurally and/or functionally critical amino acids, as well as the condition they must fulfill to play their biological role. These supplementary data should help function determination and annotation of the UniProt Swiss-Prot knowledgebase. ProRule also contains information about the domain detected by the profile in the Swiss-Prot line format. Hence, ProRule can be used to make Swiss-Prot annotation more homogeneous and consistent. The format of ProRule can be extended to provide information about combination of domains. ProRule can be accessed through ScanProsite at http://www.expasy.org/tools/scanprosite. A file containing the rules will be made available under the PROSITE copyright conditions on our ftp site (ftp://www.expasy.org/databases/prosite/) by the next PROSITE release.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                01 January 2006
                01 January 2006
                28 December 2005
                : 34
                : Database issue
                : D227-D230
                Affiliations
                Swiss Institute of Bioinformatics (SIB), Centre Medical Universitaire 1 rue Michel Servet, 1211 Geneva 4, Switzerland
                1Swiss Institute of Bioinformatics (SIB), BEP-UNIL 1066 Lausanne, Switzerland
                Author notes
                *To whom correspondence should be addressed. Tel: +41 22 379 58 72; Fax +41 22 379 58 58; Email: Nicolas.Hulo@ 123456isb-sib.ch
                Article
                10.1093/nar/gkj063
                1347426
                16381852
                c2657b24-93f8-4767-8a1b-c5b8af62e953
                © The Author 2006. Published by Oxford University Press. All rights reserved

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@ 123456oxfordjournals.org

                History
                : 13 September 2005
                : 07 October 2005
                : 07 October 2005
                Categories
                Article

                Genetics
                Genetics

                Comments

                Comment on this article