18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sociology in the Era of Big Data: The Ascent of Forensic Social Science

      , ,
      The American Sociologist
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Finding and evaluating community structure in networks

          We propose and study a set of algorithms for discovering community structure in networks -- natural divisions of network nodes into densely connected subgroups. Our algorithms all share two definitive features: first, they involve iterative removal of edges from the network to split it into communities, the edges removed being identified using one of a number of possible "betweenness" measures, and second, these measures are, crucially, recalculated after each removal. We also propose a measure for the strength of the community structure found by our algorithms, which gives us an objective metric for choosing the number of communities into which a network should be divided. We demonstrate that our algorithms are highly effective at discovering community structure in both computer-generated and real-world network data, and show how they can be used to shed light on the sometimes dauntingly complex structure of networked systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Network analysis in the social sciences.

            Over the past decade, there has been an explosion of interest in network research across the physical and social sciences. For social scientists, the theory of networks has been a gold mine, yielding explanations for social phenomena in a wide variety of disciplines from psychology to economics. Here, we review the kinds of things that social scientists have tried to explain using social network analysis and provide a nutshell description of the basic assumptions, goals, and explanatory mechanisms prevalent in the field. We hope to contribute to a dialogue among researchers from across the physical and social sciences who share a common interest in understanding the antecedents and consequences of network phenomena.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The spread of behavior in an online social network experiment.

              How do social networks affect the spread of behavior? A popular hypothesis states that networks with many clustered ties and a high degree of separation will be less effective for behavioral diffusion than networks in which locally redundant ties are rewired to provide shortcuts across the social space. A competing hypothesis argues that when behaviors require social reinforcement, a network with more clustering may be more advantageous, even if the network as a whole has a larger diameter. I investigated the effects of network structure on diffusion by studying the spread of health behavior through artificially structured online communities. Individual adoption was much more likely when participants received social reinforcement from multiple neighbors in the social network. The behavior spread farther and faster across clustered-lattice networks than across corresponding random networks.
                Bookmark

                Author and article information

                Journal
                The American Sociologist
                Am Soc
                Springer Nature
                0003-1232
                1936-4784
                March 2016
                September 2015
                : 47
                : 1
                : 12-35
                Article
                10.1007/s12108-015-9291-8
                c2156ab2-10d8-4677-879f-4e595a4776fd
                © 2016
                History

                Comments

                Comment on this article