Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Road users rarely use explicit communication when interacting in today’s traffic: implications for automated vehicles

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To be successful, automated vehicles (AVs) need to be able to manoeuvre in mixed traffic in a way that will be accepted by road users, and maximises traffic safety and efficiency. A likely prerequisite for this success is for AVs to be able to communicate effectively with other road users in a complex traffic environment. The current study, conducted as part of the European project interACT, investigates the communication strategies used by drivers and pedestrians while crossing the road at six observed locations, across three European countries. In total, 701 road user interactions were observed and annotated, using an observation protocol developed for this purpose. The observation protocols identified 20 event categories, observed from the approaching vehicles/drivers and pedestrians. These included information about movement, looking behaviour, hand gestures, and signals used, as well as some demographic data. These observations illustrated that explicit communication techniques, such as honking, flashing headlights by drivers, or hand gestures by drivers and pedestrians, rarely occurred. This observation was consistent across sites. In addition, a follow-on questionnaire, administered to a sub-set of the observed pedestrians after crossing the road, found that when contemplating a crossing, pedestrians were more likely to use vehicle-based behaviour, rather than communication cues from the driver. Overall, the findings suggest that vehicle-based movement information such as yielding cues are more likely to be used by pedestrians while crossing the road, compared to explicit communication cues from drivers, although some cultural differences were observed. The implications of these findings are discussed with respect to design of suitable external interfaces and communication of intent by future automated vehicles.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          Compliance to requests made by gazing and touching experimenters in field settings

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found
            Is Open Access

            Automated Vehicles and the Rethinking of Mobility and Cities

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pedestrian-driver communication and decision strategies at marked crossings.

              The aim of this work is to describe pedestrian-driver encounters, communication, and decision strategies at marked but unsignalised crossings in urban areas in the Czech Republic and the ways in which the parties involved experience and handle these encounters. A mixed-methods design was used, consisting of focus groups with pedestrians and drivers regarding their subjective views of the situations, on-site observations, camera recordings, speed measurements, the measurement of car and pedestrian densities, and brief on-site interviews with pedestrians. In close correspondence with the literature, our study revealed that the most relevant predictors of pedestrians' and drivers' behaviour at crossings were the densities of car traffic and pedestrian flows and car speed. The factors which influenced pedestrians' wait/go behaviour were: car speed, the distance of the car from the crossing, traffic density, whether there were cars approaching from both directions, various signs given by the driver (eye contact, waving a hand, flashing their lights), and the presence of other pedestrians. The factors influencing drivers' yield/go behaviour were: speed, traffic density, the number of pedestrians waiting to cross, and pedestrians being distracted. A great proportion of drivers (36%) failed to yield to pedestrians at marked crossings. The probability of conflict situations increased with cars travelling at a higher speed, higher traffic density, and pedestrians being distracted by a different activity while crossing. The findings of this study can add to the existing literature by helping to provide an understanding of the perception of encounter situations by the parties involved and the motives lying behind certain aspects of behaviour associated with these encounters. This seems necessary in order to develop suggestions for improvements. For instance, the infrastructure near pedestrian crossings should be designed in such a way as to take proper account of pedestrians' needs to feel safe and comfortable, as well as ensuring their objective safety. Thus, improvements should include measures aimed at reducing the speed of approaching vehicles (e.g. humps, speed cushions, elevated crossings, early yield bars, and narrow lanes), as this would enhance yielding by motor vehicles. Other measures that specifically rely on the subjective perception of different situations by the parties involved include the education and training of drivers, the aim of which is to promote their understanding and appreciation of pedestrians' needs and motives.
                Bookmark

                Author and article information

                Contributors
                Journal
                Cognition, Technology & Work
                Cogn Tech Work
                Springer Science and Business Media LLC
                1435-5558
                1435-5566
                May 2021
                June 08 2020
                May 2021
                : 23
                : 2
                : 367-380
                Article
                10.1007/s10111-020-00635-y
                c202af28-a176-46c7-b00e-d851b2b6dba2
                © 2021

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content148

                Cited by15

                Most referenced authors255