1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      On the Protein Fibrillation Pathway: Oligomer Intermediates Detection Using ATR-FTIR Spectroscopy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oligomeric intermediates on the pathway of amyloid fibrillation are suspected as the main cytotoxins responsible for amyloid-related pathogenicity. As they appear to be a part of the lag phase of amyloid fibrillation when analyzed using standard methods such as Thioflavin T (ThT) fluorescence, a more sensitive method is needed for their detection. Here we apply Fourier transform infrared spectroscopy (FTIR) in attenuated total reflectance (ATR) mode for fast and cheap analysis of destabilized hen-egg-white lysozyme solution and detection of oligomer intermediates of amyloid fibrillation. Standard methods of protein aggregation analysis— Thioflavin T (ThT) fluorescence, atomic force microscopy (AFM), and 8-anilinonaphthalene-1-sulphonic acid (ANS) fluorescence were applied and compared to FTIR spectroscopy data. Results show the great potential of FTIR for both, qualitative and quantitative monitoring of oligomer formation based on the secondary structure changes. While oligomer intermediates do not induce significant changes in ThT fluorescence, their secondary structure changes were very prominent. Normalization of specific Amide I region peak intensities by using Amide II peak intensity as an internal standard provides an opportunity to use FTIR spectroscopy for both qualitative and quantitative analysis of biological samples and detection of potentially toxic oligomers, as well as for screening of efficiency of fibrillation procedures.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Infrared spectroscopy of proteins.

          This review discusses the application of infrared spectroscopy to the study of proteins. The focus is on the mid-infrared spectral region and the study of protein reactions by reaction-induced infrared difference spectroscopy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The amyloid state and its association with protein misfolding diseases.

            The phenomenon of protein aggregation and amyloid formation has become the subject of rapidly increasing research activities across a wide range of scientific disciplines. Such activities have been stimulated by the association of amyloid deposition with a range of debilitating medical disorders, from Alzheimer's disease to type II diabetes, many of which are major threats to human health and welfare in the modern world. It has become clear, however, that the ability to form the amyloid state is more general than previously imagined, and that its study can provide unique insights into the nature of the functional forms of peptides and proteins, as well as understanding the means by which protein homeostasis can be maintained and protein metastasis avoided.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FTIR reveals structural differences between native beta-sheet proteins and amyloid fibrils.

              The presence of beta-sheets in the core of amyloid fibrils raised questions as to whether or not beta-sheet-containing proteins, such as transthyretin, are predisposed to form such fibrils. However, we show here that the molecular structure of amyloid fibrils differs more generally from the beta-sheets in native proteins. This difference is evident from the amide I region of the infrared spectrum and relates to the distribution of the phi/psi dihedral angles within the Ramachandran plot, the average number of strands per sheet, and possibly, the beta-sheet twist. These data imply that amyloid fibril formation from native beta-sheet proteins can involve a substantial structural reorganization.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                12 February 2021
                February 2021
                : 26
                : 4
                : 970
                Affiliations
                Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12, 11000 Belgrade, Serbia; jelica@ 123456chem.bg.ac.rs (J.M.); rprodano@ 123456chem.bg.ac.rs (R.P.)
                Author notes
                [* ]Correspondence: polovicn@ 123456chem.bg.ac.rs ; Tel.: +38-1113-336-657
                Author information
                https://orcid.org/0000-0003-4662-1825
                https://orcid.org/0000-0002-9127-2014
                Article
                molecules-26-00970
                10.3390/molecules26040970
                7918411
                c1f2dddc-7d6f-4ed0-96d1-25f4459f9ebb
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 24 December 2020
                : 05 February 2021
                Categories
                Article

                atr ftir,oligomer intermediates,amyloid fibrillation,hewl,secondary structure perturbation

                Comments

                Comment on this article