Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of dietary hatchery by-products on growth performance, relative organ weight, plasma measurements, immune organ index, meat quality, and tibia characteristics of broiler chickens

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          The objective of the current study was to investigate the effects of dietary hatchery by-products (HBPs) as a replacement of fish meal (FM) on growth performance, relative organ weight, plasma measurements, immune organ index, meat quality, and tibia characteristics of broiler chickens.

          Methods

          A total of 720 broiler chickens (3 d of age) were randomly allotted to 1 of 9 treatments with 8 replicates. Each replicate consisted of 5 male and 5 female birds. The basal diet was formulated to contain 5.0% commercial FM, whereas eight treatment diets were prepared by replacing 25%, 50%, 75%, or 100% of FM in the basal diet with infertile eggs (IFE) or a mixture of various HBPs (MIX); therefore, the inclusion levels of IFE or MIX in the experimental diets were 1.25%, 2.50%, 3.75%, or 5.00%. The diets and water were provided on an ad libitum basis for 32 d.

          Results

          Increasing inclusion levels of IFE as a replacement of FM in diets had no effects on growth performance, plasma measurements, immune organ index, and tibia characteristics of broiler chickens. Increasing inclusion levels of IFE in diets increased (linear, p<0.05) meat lightness (L*) but decreased (linear, p<0.05) meat redness (a*). The breast meat pH at 1-h postmortem was increased (linear, p<0.05) by increasing inclusion levels of IFE in diets. Likewise, increasing inclusion levels of MIX in diets had no effects on growth performance, relative organ weight, plasma measurements, immune organ index, and tibia characteristics. However, increasing inclusion levels of MIX in diets increased (linear, p<0.05) 1-h postmortem pH but decreased (linear, p<0.05) 24-h postmortem pH of breast meat. Increasing inclusion levels of MIX in diets decreased (linear, p<0.05) thiobarbituric acid reactive substances values of breast meat.

          Conclusion

          Both IFE and MIX are suitable alternatives to FM as protein ingredients in broiler diets.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens.

          A feeding trial was conducted to investigate the effects of dietary supplementations of synbiotic and probiotic on broiler performance, carcass yield, organs weights, and histomorphological measurements of small intestine. Six hundred 1-d-old broiler chicks were randomly assigned to 1 of 3 dietary treatments for 5 wk. The dietary treatments were 1) control, 2) basal diets supplemented with synbiotic (1 kg of Biomin IMBO/ ton of the starter diets and 0.5 kg/ton of the grower diets), 3) basal diets supplemented with probiotic (1 kg of a homofermentative and a heterofermentative Lacto-bacillus sp./ton of feed). The BW, average daily weight gain, carcass yield percentage, and feed conversion rate were significantly (P 0.05). However, the ileal crypt depth was decreased by dietary supplementations compared with control. In conclusion, synbiotic or probiotic displayed a greater efficacy as growth promoters for broilers. Furthermore, the dietary supplementations resulted in an increase in the villus height and crypt depth of intestinal mucosa of broilers. The increase in the villus height and villus height:crypt depth ratio was associated with improvement of growth performance for both synbiotic and probiotic. This indicates that the synbiotic and probiotic can be used as a growth promoter in broiler diets and can improve the gut health. These products show promising effects as alternatives for antibiotics as pressure to eliminate growth-promotant antibiotic use increases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            The effect of insoluble fiber and intermittent feeding on gizzard development, gut motility, and performance of broiler chickens.

            Two experiments were conducted to test the following hypothesis: exposing broiler chickens to coarse insoluble fiber in the diet will result in enhanced gizzard function and performance, improved adaptability to an intermittent feeding program, and an increase in the occurrence of reverse peristalsis. In experiment 1, 102 Ross 308 broiler chickens were either intermittently or ad libitum fed a basal diet, the basal diet diluted with 15% coarse hulls (consisting of equal weights of hulls from oats and barley), or the basal diet diluted with 15% of the same hulls finely ground in a 2 × 3 factorial arrangement with 17 individually caged birds per treatment. Birds fed ad libitum had access to feed continuously for 18 h/d, whereas those on intermittent feeding had restricted access to feed from 7 d of age. From 18 d of age, the restrictive-feeding program consisted of four 1-h meals and one 2-h meal per day. In experiment 2, 156 broiler chickens in 12 pen cages with wood shaving-lined floors were exposed to 1 of 4 treatment groups with 3 pens/treatment: intermittent or ad libitum feeding of a basal diet and intermittent or ad libitum feeding of a coarse hull diet, as described above. At 31 and 32 d of age, birds in experiment 1 were inoculated with chromium EDTA via the cloaca. There was no interaction between diet and feeding regimen. The addition of hulls increased gizzard weight and content and lowered (P < 0.001) gizzard pH, but it had no effect on the ability of the birds to handle intermittent feeding. Despite the dilution with coarse hulls, weight gain and the gain:feed ratio were not affected, which could partly be explained by an increased (P < 0.001) starch digestibility. Dietary reflux was confirmed by the presence of chromium in all intestinal tract sections. Broilers exhibited reverse peristaltic contractions of sufficient magnitude to propel the marker from the cloaca to the gizzard.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Normal structure, function and histology of the thymus.

              The thymus, a primary lymphoid organ and the initial site for development of T cell immunological function, is morphologically similar across species. It is actually an epithelial organ in which its epithelial cells provide a framework containing T cells as well as smaller numbers of other lymphoid cells. A symbiotic interaction exists between the thymic microenvironment and developing T cells, and the specificity of T cell release into the systemic circulation is under thymic control. The thymic cortex in a young animal is heavily populated by developing T cells along with a smaller proportion of associated epithelial cells. Larger, more mature T cells are found in the medulla where epithelial and other cell types are more abundant. Understanding normal morphological features of the thymus and their perturbations provides a cornerstone to assessing immune system function.
                Bookmark

                Author and article information

                Journal
                Anim Biosci
                Anim Biosci
                Animal Bioscience
                Animal Bioscience
                2765-0189
                2765-0235
                July 2021
                4 January 2021
                : 34
                : 7
                : 1181-1192
                Affiliations
                [1 ]Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
                Author notes
                [* ] Corresponding Author: Dong Yong Kil, Tel: +82-31-670-3028, E-mail: dongyong@ 123456cau.ac.kr
                Author information
                https://orcid.org/0000-0003-4000-990X
                https://orcid.org/0000-0003-0289-2949
                https://orcid.org/0000-0001-7794-2213
                https://orcid.org/0000-0003-1697-4435
                https://orcid.org/0000-0002-9297-849X
                Article
                ab-20-0755
                10.5713/ab.20.0755
                8255869
                33561330
                c1d95564-47c7-4727-83ed-39d1cfbf45ae
                Copyright © 2021 by Animal Bioscience

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 November 2020
                : 21 December 2020
                : 26 December 2020
                Categories
                Article
                Nonruminant Nutrition and Feed Processing

                animal protein ingredient,broiler chicken,fish meal,growth performance,hatchery by-products,infertile eggs

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content306

                Cited by17

                Most referenced authors338