0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TXNIP overexpression in mice enhances streptozotocin-induced diabetes severity

      , , ,
      Molecular and Cellular Endocrinology
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Thioredoxin-interacting protein (TXNIP) is a key player in the endocrine pancreas; it induces beta cell apoptosis, such that TXNIP deficiency promotes beta cell survival. To study its function in more detail, we generated transgenic mice with ubiquitous overexpression of TXNIP. CBATXNIP/+ mice were investigated under basal conditions and after being challenged in diet-induced obesity (DIO) and streptozotocin-induced type 1 diabetes mellitus (T1DM) models. TXNIP overexpression caused no effect in the DIO model, contrasting to the already reported TXNIP-deficient mice. However, in the T1DM background, CBATXNIP/+ animals showed significantly enhanced blood glucose and increased glucose levels in a glucose tolerance test. Finally, the beta cell mass of CBATXNIP/+ transgenic animals in the T1DM model was significantly reduced compared to control littermates. Our study demonstrates that overexpression of TXNIP doesn't affect blood glucose parameters under basal conditions. However, overexpression of TXNIP in a T1DM model enhances the severity of the disease.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Thioredoxin-interacting protein links oxidative stress to inflammasome activation.

          The NLRP3 inflammasome has a major role in regulating innate immunity. Deregulated inflammasome activity is associated with several inflammatory diseases, yet little is known about the signaling pathways that lead to its activation. Here we show that NLRP3 interacted with thioredoxin (TRX)-interacting protein (TXNIP), a protein linked to insulin resistance. Inflammasome activators such as uric acid crystals induced the dissociation of TXNIP from thioredoxin in a reactive oxygen species (ROS)-sensitive manner and allowed it to bind NLRP3. TXNIP deficiency impaired activation of the NLRP3 inflammasome and subsequent secretion of interleukin 1beta (IL-1beta). Akin to Txnip(-/-) mice, Nlrp3(-/-) mice showed improved glucose tolerance and insulin sensitivity. The participation of TXNIP in the NLRP3 inflammasome activation may provide a mechanistic link to the observed involvement of IL-1beta in the pathogenesis of type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1.

            Thioredoxin-interacting protein (TXNIP) is an α-arrestin family protein that is induced in response to glucose elevation. It has been shown to provide a negative feedback loop to regulate glucose uptake into cells, though the biochemical mechanism of action has been obscure. Here, we report that TXNIP suppresses glucose uptake directly, by binding to the glucose transporter GLUT1 and inducing GLUT1 internalization through clathrin-coated pits, as well as indirectly, by reducing the level of GLUT1 messenger RNA (mRNA). In addition, we show that energy stress results in the phosphorylation of TXNIP by AMP-dependent protein kinase (AMPK), leading to its rapid degradation. This suppression of TXNIP results in an acute increase in GLUT1 function and an increase in GLUT1 mRNA (hence the total protein levels) for long-term adaptation. The glucose influx through GLUT1 restores ATP-to-ADP ratios in the short run and ultimately induces TXNIP protein production to suppress glucose uptake once energy homeostasis is reestablished. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome.

              Recent clinical and experimental evidence suggests that endoplasmic reticulum (ER) stress contributes to the life-and-death decisions of β cells during the progression of type 1 and type 2 diabetes. Although crosstalk between inflammation and ER stress has been suggested to play a significant role in β cell dysfunction and death, a key molecule connecting ER stress to inflammation has not been identified. Here we report that thioredoxin-interacting protein (TXNIP) is a critical signaling node that links ER stress and inflammation. TXNIP is induced by ER stress through the PERK and IRE1 pathways, induces IL-1β mRNA transcription, activates IL-1β production by the NLRP3 inflammasome, and mediates ER stress-mediated β cell death. Collectively, our results suggest that TXNIP is a potential therapeutic target for diabetes and ER stress-related human diseases such as Wolfram syndrome. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Molecular and Cellular Endocrinology
                Molecular and Cellular Endocrinology
                Elsevier BV
                03037207
                April 2023
                April 2023
                : 565
                : 111885
                Article
                10.1016/j.mce.2023.111885
                36773839
                c1c81f2a-4de5-487e-8825-102c3e174dba
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article